- Current docs are pointing to the wrong module, fixed
- Added some explanation on how to find the necessary parameters
- Added chat-based codegen example w/ retrievers
Picture of the new page:
![Screenshot 2023-03-29 at 20-11-29 Figma — 🦜🔗 LangChain 0 0
126](https://user-images.githubusercontent.com/2172753/228719338-c7ec5b11-01c2-4378-952e-38bc809f217b.png)
Please let me know if you'd like any tweaks! I wasn't sure if the
example was too heavy for the page or not but decided "hey, I probably
would want to see it" and so included it.
Co-authored-by: maxtheman <max@maxs-mbp.lan>
@3coins + @zoltan-fedor.... heres the pr + some minor changes i made.
thoguhts? can try to get it into tmrws release
---------
Co-authored-by: Zoltan Fedor <zoltan.0.fedor@gmail.com>
Co-authored-by: Piyush Jain <piyushjain@duck.com>
I've found it useful to track the number of successful requests to
OpenAI. This gives me a better sense of the efficiency of my prompts and
helps compare map_reduce/refine on a cheaper model vs. stuffing on a
more expensive model with higher capacity.
Seems like a copy paste error. The very next example does have this
line.
Please tell me if I missed something in the process and should have
created an issue or something first!
This PR adds Notion DB loader for langchain.
It reads content from pages within a Notion Database. It uses the Notion
API to query the database and read the pages. It also reads the metadata
from the pages and stores it in the Document object.
seems linkchecker isn't catching them because it runs on generated html.
at that point the links are already missing.
the generation process seems to strip invalid references when they can't
be re-written from md to html.
I used https://github.com/tcort/markdown-link-check to check the doc
source directly.
There are a few false positives on localhost for development.
I noticed that the "getting started" guide section on agents included an
example test where the agent was getting the question wrong 😅
I guess Olivia Wilde's dating life is too tough to keep track of for
this simple agent example. Let's change it to something a little easier,
so users who are running their agent for the first time are less likely
to be confused by a result that doesn't match that which is on the docs.
Added support for document loaders for Azure Blob Storage using a
connection string. Fixes#1805
---------
Co-authored-by: Mick Vleeshouwer <mick@imick.nl>
Ran into a broken build if bs4 wasn't installed in the project.
Minor tweak to follow the other doc loaders optional package-loading
conventions.
Also updated html docs to include reference to this new html loader.
side note: Should there be 2 different html-to-text document loaders?
This new one only handles local files, while the existing unstructured
html loader handles HTML from local and remote. So it seems like the
improvement was adding the title to the metadata, which is useful but
could also be added to `html.py`