Add admonition to the documentation to make sure users are aware that
the tool allows execution of code on the host machine using a python
interpreter (by design).
If the global `debug` flag is enabled, the agent will get the following
error in `FunctionCallbackHandler._on_tool_end` at runtime.
```
Error in ConsoleCallbackHandler.on_tool_end callback: AttributeError("'list' object has no attribute 'strip'")
```
By calling str() before strip(), the error was avoided.
This error can be seen at
[debugging.ipynb](https://github.com/langchain-ai/langchain/blob/master/docs/docs/how_to/debugging.ipynb).
- Issue: NA
- Dependencies: NA
- Twitter handle: https://x.com/kiarina37
Remove the REPL from community, and suggest an alternative import from
langchain_experimental.
Fix for this issue:
https://github.com/langchain-ai/langchain/issues/14345
This is not a bug in the code or an actual security risk. The python
REPL itself is behaving as expected.
The PR is done to appease blanket security policies that are just
looking for the presence of exec in the code.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR moves the validation of the decorator to a better place to avoid
creating bugs while deprecating code.
Prevent issues like this from arising:
https://github.com/langchain-ai/langchain/issues/22510
we should replace with a linter at some point that just does static
analysis
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
- **Description:** Some of the Cross-Encoder models provide scores in
pairs, i.e., <not-relevant score (higher means the document is less
relevant to the query), relevant score (higher means the document is
more relevant to the query)>. However, the `HuggingFaceCrossEncoder`
`score` method does not currently take into account the pair situation.
This PR addresses this issue by modifying the method to consider only
the relevant score if score is being provided in pair. The reason for
focusing on the relevant score is that the compressors select the top-n
documents based on relevance.
- **Issue:** #22556
- Please also refer to this
[comment](https://github.com/UKPLab/sentence-transformers/issues/568#issuecomment-729153075)
- **PR title**: [community] add chat model llamacpp
- **PR message**:
- **Description:** This PR introduces a new chat model integration with
llamacpp_python, designed to work similarly to the existing ChatOpenAI
model.
+ Work well with instructed chat, chain and function/tool calling.
+ Work with LangGraph (persistent memory, tool calling), will update
soon
- **Dependencies:** This change requires the llamacpp_python library to
be installed.
@baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Updated ChatGroq doc string as per issue
https://github.com/langchain-ai/langchain/issues/22296:"langchain_groq:
updated docstring for ChatGroq in langchain_groq to match that of the
description (in the appendix) provided in issue
https://github.com/langchain-ai/langchain/issues/22296. "
Issue: This PR is in response to issue
https://github.com/langchain-ai/langchain/issues/22296, and more
specifically the ChatGroq model. In particular, this PR updates the
docstring for langchain/libs/partners/groq/langchain_groq/chat_model.py
by adding the following sections: Instantiate, Invoke, Stream, Async,
Tool calling, Structured Output, and Response metadata. I used the
template from the Anthropic implementation and referenced the Appendix
of the original issue post. I also noted that: `usage_metadata `returns
none for all ChatGroq models I tested; there is no mention of image
input in the ChatGroq documentation; unlike that of ChatHuggingFace,
`.stream(messages)` for ChatGroq returned blocks of output.
---------
Co-authored-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR adds the feature add Prem Template feature in ChatPremAI.
Additionally it fixes a minor bug for API auth error when API passed
through arguments.
Description: Adjusting the syntax for creating the vectorstore
collection (in the case of automatic embedding computation) for the most
idiomatic way to submit the stored secret name.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:**
Update the NVIDIA Riva tool documentation to use NVIDIA NIM for the LLM.
Show how to use NVIDIA NIMs and link to documentation for LangChain with
NIM.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
This PR addresses several lint errors in the core package of LangChain.
Specifically, the following issues were fixed:
1.Unexpected keyword argument "required" for "Field" [call-arg]
2.tests/integration_tests/chains/test_cpal.py:263: error: Unexpected
keyword argument "narrative_input" for "QueryModel" [call-arg]
This should make it obvious that a few of the agents in langchain
experimental rely on the python REPL as a tool under the hood, and will
force users to opt-in.
This downgrades `Function/tool calling` from a h3 to an h4 which means
it'll no longer show up in the right sidebar, but any direct links will
still work. I think that is ok, but LMK if you disapprove.
CC @hwchase17 @eyurtsev @rlancemartin
We need to use a different version of numpy for py3.8 and py3.12 in
pyproject.
And so do projects that use that Python version range and import
langchain.
- **Twitter handle:** _cbornet