- **Description:** This is a template for creating shopping assistant
chat bots
- **Issue:** Example for creating a shopping assistant with OpenAI Tools
Agent
- **Dependencies:** Ionic
https://github.com/ioniccommerce/ionic_langchain
- **Twitter handle:** @ioniccommerce
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- FIX templates/retrieval-agent/retireval-agent/chain.py to use the new
Syntax for Azure env params
- cr
---------
Co-authored-by: braun-viathan <p.braun@viathan.de>
Co-authored-by: Braun-viathan <121631422+braun-viathan@users.noreply.github.com>
fixed multi-query template for Vectara
added self-query template for Vectara
Also added prompt_name parameter to summarization
CC @efriis
**Twitter handle:** @ofermend
- **Description:** Fixes a few issues in NVIDIAcanonical RAG template's
README, and adds a notebook for the template
- **Dependencies:** Adds the pypdf dependency which is needed for
ingestion, and updates the lock file
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Adds a RAG template that uses NVIDIA AI playground
and embedding models, along with Milvus vector store
- **Dependencies:** This template depends on the AI playground service
in NVIDIA NGC. API keys with a significant trial compute are available
(10k queries at the time of writing). This template also depends on the
Milvus Vector store which is publicly available.
Note: [A quick link to get a
key](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/codellama-13b/api)
when you have an NGC account. Generate Key button at the top right of
the code window.
---------
Co-authored-by: Sagar B Manjunath <sbogadimanju@nvidia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
…tch]: import models from community
ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
# Description: _python-lint_
This agent writes Python code that is formatted and linted using
`black`, `ruff`, and `mypy`, but does not execute the code. It writes
the code to a temporary file and then runs the linters. Once these
checks pass, the code is returned.
# Dependencies
- black
- ruff
- mypy
# Demo
The functionality can be seen here:
https://huggingface.co/spaces/joshuasundance/langchain-streamlit-demo
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Description: Adding Summarization to Vectara, to reflect it provides not
only vector-store type functionality but also can return a summary.
Also added:
MMR capability (in the Vectara platform side)
Updated templates
Updated documentation and IPYNB examples
Tag maintainer: @baskaryan
Twitter handle: @ofermend
---------
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
This PR adds a simple LangChain template that uses [Anthropic's Claude
on Amazon Bedrock ⛰️](https://aws.amazon.com/bedrock/claude/) to behave
like JCVD.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Fixes to rag-semi-structured template.
- Added required libraries
- pdfminer was causing issues when installing with pip. pdfminer.six
works best
- Changed the pdf name for demo from llama2 to llava
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Change instances of RunnableMap to RunnableParallel,
as that should be the one used going forward. This makes it consistent
across the codebase.