Commit Graph

13 Commits

Author SHA1 Message Date
Alexander Borzunov
de930918a0
Support loading blocks in 4-bit (QLoRA NF4 format, disabled by default) (#333) 2023-07-03 20:13:04 +04:00
Alexander Borzunov
cb3f018f9f
Add LLaMA support (#323)
This PR:

1. **Abolishes the model conversion procedure.** Now, models are downloaded directly from original repositories like https://huggingface.co/bigscience/bloom. Servers download only shards with blocks to be hosted, and clients download only shards with input/output embeddings and layernorms.

    - BLOOM is loaded from `bigscience/bloom`, but we use the DHT prefix `bigscience/bloom-petals` for backward compatibility. Same with smaller BLOOMs and BLOOMZ.
    - LLaMA can be loaded from any repo like `username/llama-65b-hf`, but we use the DHT prefix `llama-65b-hf` (without the username) to accomodate blocks from different repos (there're a few of them with minor differences, such as `Llama` vs. `LLaMA` in the class name).

2. **Refactors the client to generalize it for multiple models.** Now, we have `petals.models` packages that contain model-specific code (e.g. `petals.models.bloom`, `petals.models.llama`). General code (e.g. CPU-efficient LM head, p-tuning) is kept in `petals.client`.

3. **Introduces** `WrappedLlamaBlock`, `DistributedLlamaConfig`, `DistributedLlamaForCausalLM`, `DistributedLlamaForSequenceClassification`, and `DistributedLlamaModel` compatible with Petals functionality (p-tuning, adapters, etc.).

4. **Introduces** `AutoDistributedConfig` that automatically chooses the correct config class (`DistributedLlamaConfig` or `DistributedBloomConfig`). The refactored configs contain all model-specific info for both clients and servers.

Upgrade instructions:

- Remove disk caches for blocks in old (converted) format to save disk space. That is, remove `~/.cache/petals/model--bigscience--bloom-petals` and  `~/.cache/petals/model--bigscience--bloomz-petals` directories (if present).
2023-06-23 15:46:10 +04:00
Alexander Borzunov
8f6342a861
Refactor RemoteSequenceManager (#309)
This PR:

1. **Extracts `SequenceManagerConfig` and `SequenceManagerState` subclasses.**

    The config is provided by caller and never changed from inside `RemoteSequenceManager`. The state is a part of the `RemoteSequenceManager`'s state shared between the main manager and its slices. We fix some slicing bugs along the way.

2. **Removes `dht_prefix` and `p2p` arguments, makes `dht` argument optional.**

    `dht_prefix` can always be overridden using `config.dht_prefix`. `p2p` actually needed only under the hood of `RemoteSequenceManager`, so it can extract it by itself without exposing this low-level class to callers. If strictly necessary, a caller can provide `p2p` as a part of `SequenceManagerState`. `dht` is also needed only by `RemoteSequenceManager`, so we can make it optional in the parent classes and create it automatically when it's not provided.

3. **Simplifies retry logic.**

    Previously, we could have "nested" retry loops: one in `._update()`, another in inference/forward/backward steps. The loop in `._update()` could introduce issues to concurrent inference/forward/backward calls, since it blocks the entire class if its delay period becomes too high. Now this logic is simplified: `._update()` performs only one attempt to fetch the DHT info, any retries are triggered by the inference/forward/backward steps.

4. **Removes deprecated `RemoteTransformerBlock`.**

    `RemoteTransformerBlock` was deprecated a long time ago, before Petals 1.0.0. Its removal is long due.

5. **Removes `dht_utils.get_remote_module()`, `dht_utils.get_remote_sequence()`.**

    This functions duplicate the functionality of the `RemoteSequential` constructor.

6. (minor) **Removes `RemoteSequential.is_subsequence` flag.**

    This flag worked incorrectly and was never used. I am removing it for the sake of simplicity.
2023-05-07 13:41:13 +04:00
Alexander Borzunov
21c3526ec1
Start SequenceManager's thread only after first .make_sequence() (#301)
**Why?**

- We'd like to avoid excess threads for the original sequence manager in case if we only use its slices (e.g. when we add adapters or need only a subset of model blocks):

- If we create a sequence manager just before a fork (e.g. in a web app backend or a multi-thread benchmark), we'd like to avoid excess threads in the original process and only use this thread in child processes where we actually call `.make_sequence()`.
2023-04-12 21:38:43 +04:00
Max Ryabinin
793726b041
Speed up loading blocks using init with meta weights (#285)
* Init WrappedBloomBlock with meta weights

---------

Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
2023-03-13 00:49:04 +03:00
Alexander Borzunov
fee19e9b9b
Use get_logger(__name__) instead of get_logger(__file__) (#265) 2023-02-19 05:46:17 +04:00
justheuristic
ae9e71fe8e
Add local tensor-parallel fwd/bwd (#143)
This pull request adds an option to run Petals server on multiple local GPUs. It uses https://github.com/BlackSamorez/tensor_parallel

- 8bit approximation error same as in main (mean~=2% q0.9~=5%)
    - TP=1, 2, 3 (see screenshots above)
- forward, grad w.r.t. input and inference exact match with main with TP=1
- `>=`80% GPU utilization with 3x 1080ti, batch = 8 tokens
- throughput measured with and without TP
- TP on 1080Tis has near-linear speedup comparable to the benchmarks (see first message)


Co-authored-by: Iaroslav Lisniak <yalisnyak@nes.ru>
Co-authored-by: Andrei Panferov <andrei@blacksamorez.ru>
Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
2023-01-03 18:35:51 +03:00
Alexander Borzunov
668b736031
Fix logging: do not duplicate lines, enable colors in Colab (#156) 2022-12-15 09:12:18 +04:00
justheuristic
a2066a4096
Optimize RemoteSequenceManager (#106)
- [x] made RemoteSequenceManager into a background thread that pre-fetches information instead of running just in time
- [x] moved routing-related stuff to petals.client.routing
- [x] extract remote peer routing information to RemoteSequenceInfo
- [x] made sure that the code survives continued use (e.g. one hour)
- [x] updated every spot where update_ is called manually
- [x] modified get_sequence to check that the thread is alive, warn if not
- [x] removed max_retries, switched rpc_info to exponential backoff
- [x] fixed a bg that causes RemoteSeq* to lose user-defined hyperparameters (e.g. timeout) upon subsequencing (sequential[3:5])
- [x] moved client-side points strategy to client.routing
- [x] ensured that RemoteSequenceManager thread created in get_remote_module properly shuts down when the module is destroyed
- [x] resolved minor affected todos
- [x] modified tests to no longer use PYTHONPATH
- [x] worked around protocol error in rpc_info


Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
Co-authored-by: Artem Chumachenko <artek.chumak@gmail.com>
2022-12-01 10:25:55 +03:00
Alexander Borzunov
43ac6016ac
Fix dtypes in backend schemas (#99)
Currently, the schemas use `torch.float32`, so all inputs and outputs converted to float32 before sending and after receiving on both servers and clients. This creates a huge slowdown for the system.

* This PR makes the schemas use the server's `--torch_dtype` argument (default is `torch.bloat16` for BLOOM-176B)
* an option for client to request a specific output compression. Use case 1: client sends quantized inputs and expects quantized inputs in return. Use case 2: client uses quantization for gradients w.r.t. activations, but keeps grads w.r.t. __prompts__ as is for greater precision.
* a comment explaining the purpose of NoSpendingPolicy - since we likely won't have it for the workshop
* a test with custom compression (janky implementation for testing purposes)

Co-authored-by: justheuristic <justheuristic@gmail.com>
2022-11-30 17:40:43 +03:00
Alexander Borzunov
7bd5916744
Make Petals a pip-installable package (attempt 2) (#102)
1. Petals can be now installed using `pip install git+https://github.com/bigscience-workshop/petals`
    - In case if you already cloned the repo, you can do `pip install .` or `pip install .[dev]`
2. Moved `src` => `src/petals`
    - Replaced `from src.smth import smth` with `from petals.smth import smth`
3. Moved `cli` => `src/petals/cli`
    - Replaced `python -m cli.run_smth` with `python -m petals.cli.run_smth` (all utilities are now available right after pip installation)
4. Moved the `requirements*.txt` contents to `setup.cfg` (`requirements.txt` for packages is not supported well by modern packaging utils)
5. Increased the package version from `0.2` to `1.0alpha1`
2022-11-30 10:41:13 +04:00
Dmitry Baranchuk
6095f58681
Deep distributed prompt tuning (#42)
* implemented an option to add learnable prompts to intermediate layers
* added support for prompts (as input) in rpc_forward and rpc_backward
* added a test to check that RemoteSequential works correctly with deep prompts

Co-authored-by: justheuristic <justheuristic@gmail.com>
2022-08-12 18:28:21 +03:00
justheuristic
f0c7383181
Implement RemoteSequential slicing and extra repr, add tests (#30)
- finish renaming RemoteSequenceInfo -> RemoteSequenceManager (why: if it was an *Info, user would expect it to be similar - to a dataclass; whereas in actuality, the class is doing heavy network interactions on its own)
- implement RemoteSequenceManager.make_sequence (from https://pastebin.com/uXgy2U8B )
- make RemoteSequentialInferenceSession use RemoteSequenceManager.make_sequence
- make tests pass again
- make it possible to create inference session without RemoteTransformerBlock
- make a standalone test for RemoteSequential
- rollback convert-model

Co-authored-by: Tim Dettmers <tim.dettmers@gmail.com>
2022-07-19 04:28:04 +03:00