Add LLaMA support (#323)

This PR:

1. **Abolishes the model conversion procedure.** Now, models are downloaded directly from original repositories like https://huggingface.co/bigscience/bloom. Servers download only shards with blocks to be hosted, and clients download only shards with input/output embeddings and layernorms.

    - BLOOM is loaded from `bigscience/bloom`, but we use the DHT prefix `bigscience/bloom-petals` for backward compatibility. Same with smaller BLOOMs and BLOOMZ.
    - LLaMA can be loaded from any repo like `username/llama-65b-hf`, but we use the DHT prefix `llama-65b-hf` (without the username) to accomodate blocks from different repos (there're a few of them with minor differences, such as `Llama` vs. `LLaMA` in the class name).

2. **Refactors the client to generalize it for multiple models.** Now, we have `petals.models` packages that contain model-specific code (e.g. `petals.models.bloom`, `petals.models.llama`). General code (e.g. CPU-efficient LM head, p-tuning) is kept in `petals.client`.

3. **Introduces** `WrappedLlamaBlock`, `DistributedLlamaConfig`, `DistributedLlamaForCausalLM`, `DistributedLlamaForSequenceClassification`, and `DistributedLlamaModel` compatible with Petals functionality (p-tuning, adapters, etc.).

4. **Introduces** `AutoDistributedConfig` that automatically chooses the correct config class (`DistributedLlamaConfig` or `DistributedBloomConfig`). The refactored configs contain all model-specific info for both clients and servers.

Upgrade instructions:

- Remove disk caches for blocks in old (converted) format to save disk space. That is, remove `~/.cache/petals/model--bigscience--bloom-petals` and  `~/.cache/petals/model--bigscience--bloomz-petals` directories (if present).
pull/329/head
Alexander Borzunov 11 months ago committed by GitHub
parent 5c0733711a
commit cb3f018f9f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -6,57 +6,8 @@ on:
pull_request:
jobs:
convert-model:
runs-on: ubuntu-latest
env:
BLOOM_TESTING_WRITE_TOKEN: ${{ secrets.BLOOM_TESTING_WRITE_TOKEN }}
timeout-minutes: 15
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Check if the model is cached
id: cache-model
uses: actions/cache@v3
with:
path: ~/converted_ok
key: model-v1-${{ hashFiles('setup.cfg', 'src/petals/cli/convert_model.py') }}
- name: Set up Python
if: steps.cache-model.outputs.cache-hit != 'true'
uses: actions/setup-python@v3
with:
python-version: 3.9
- name: Cache dependencies
if: steps.cache-model.outputs.cache-hit != 'true'
uses: actions/cache@v3
with:
path: ~/.cache/pip
key: Key-v1-3.9-${{ hashFiles('setup.cfg') }}
- name: Install dependencies
if: steps.cache-model.outputs.cache-hit != 'true'
run: |
python -m pip install --upgrade pip
pip install .
- name: Delete any test models older than 1 week
if: steps.cache-model.outputs.cache-hit != 'true'
run: |
python tests/scripts/remove_old_models.py --author bloom-testing --use_auth_token $BLOOM_TESTING_WRITE_TOKEN
- name: Delete previous version of this model, if exists
if: steps.cache-model.outputs.cache-hit != 'true'
run: |
export HF_TAG=$(python -c "import os; print(os.environ.get('GITHUB_HEAD_REF') or os.environ.get('GITHUB_REF_NAME'))")
python -c "from huggingface_hub import delete_repo; delete_repo(token='$BLOOM_TESTING_WRITE_TOKEN', \
repo_id='bloom-testing/test-bloomd-560m-$HF_TAG')" || true
- name: Convert model and push to hub
if: steps.cache-model.outputs.cache-hit != 'true'
run: |
export HF_TAG=${{ hashFiles('setup.cfg', 'src/petals/cli/convert_model.py') }}
python -m petals.cli.convert_model --model bigscience/bloom-560m --output_path ./converted_model \
--output_repo bloom-testing/test-bloomd-560m-$HF_TAG --use_auth_token $BLOOM_TESTING_WRITE_TOKEN \
--resize_token_embeddings 50000 && touch ~/converted_ok
run-tests:
runs-on: ubuntu-latest
needs: convert-model
strategy:
matrix:
python-version: [ '3.7', '3.8', '3.9', '3.10' ]
@ -80,8 +31,7 @@ jobs:
pip install .[dev]
- name: Test
run: |
export HF_TAG=${{ hashFiles('setup.cfg', 'src/petals/cli/convert_model.py') }}
export MODEL_NAME=bloom-testing/test-bloomd-560m-$HF_TAG
export MODEL_NAME=bigscience/bloom-560m
export REF_NAME=bigscience/bloom-560m
python -m petals.cli.run_server --converted_model_name_or_path $MODEL_NAME --block_indices 0:12 \
@ -104,23 +54,19 @@ jobs:
--initial_peers $INITIAL_PEERS --throughput 1 --torch_dtype float32 &> server3.log &
SERVER3_PID=$!
python -m petals.cli.run_server --converted_model_name_or_path $MODEL_NAME --block_indices 4:14 \
--torch_dtype float32 --initial_peers $INITIAL_PEERS --throughput 1 &> server4.log &
SERVER4_PID=$!
python -m petals.cli.run_server --converted_model_name_or_path $MODEL_NAME --num_blocks 3 \
--initial_peers $INITIAL_PEERS --throughput 1 --tensor_parallel_devices cpu cpu --torch_dtype float32 &> server5.log &
SERVER5_PID=$!
--initial_peers $INITIAL_PEERS --throughput 1 --torch_dtype float32 --tensor_parallel_devices cpu cpu &> server4.log &
SERVER4_PID=$!
tail -n 100 -f server*.log &
LOGGER_PID=$!
sleep 30 # wait for servers to download layers
kill -0 $SERVER1_PID $SERVER2_PID $SERVER3_PID $SERVER4_PID $SERVER5_PID # ensure all servers survived init
kill -0 $SERVER1_PID $SERVER2_PID $SERVER3_PID $SERVER4_PID # ensure all servers survived init
pytest tests --durations=0 --durations-min=1.0 -v
kill -0 $SERVER1_PID $SERVER2_PID $SERVER3_PID $SERVER4_PID $SERVER5_PID # ensure all servers survived tests
kill -0 $SERVER1_PID $SERVER2_PID $SERVER3_PID $SERVER4_PID # ensure all servers survived tests
kill -s SIGINT $SERVER1_PID $SERVER2_PID $SERVER3_PID $SERVER4_PID $SERVER5_PID $LOGGER_PID
kill -s SIGINT $SERVER1_PID $SERVER2_PID $SERVER3_PID $SERVER4_PID $LOGGER_PID
echo "Done!"

@ -35,7 +35,8 @@ install_requires =
bitsandbytes==0.38.0.post2
accelerate>=0.16.0,<1.0.0
huggingface-hub>=0.11.1,<1.0.0
transformers>=4.25.1,<5.0.0
tokenizers>=0.13.3
transformers>=4.30.1,<5.0.0
speedtest-cli==2.1.3
hivemind==1.1.8
tensor_parallel==1.0.23
@ -43,6 +44,7 @@ install_requires =
async-timeout>=4.0.2
cpufeature>=0.2.0
packaging>=20.9
sentencepiece>=0.1.99
[options.extras_require]
dev =

@ -1,11 +1,21 @@
import os
import hivemind
import transformers
from packaging import version
from petals.client import *
from petals.models import *
from petals.utils import *
from petals.utils.logging import initialize_logs as _initialize_logs
__version__ = "1.1.5"
__version__ = "1.2.0.dev0"
if not os.getenv("PETALS_IGNORE_DEPENDENCY_VERSION"):
assert (
version.parse("4.30.1") <= version.parse(transformers.__version__) < version.parse("5.0.0")
), "Please install a proper transformers version: pip install transformers>=4.30.1,<5.0.0"
def _override_bfloat16_mode_default():

@ -1,62 +0,0 @@
"""
Bloom intermediate layer
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
See commit history for authorship.
"""
import os
from typing import Optional, Tuple
import torch.nn.quantized.dynamic.modules.linear
import transformers
from packaging import version
from transformers.models.bloom.modeling_bloom import BloomBlock, _expand_mask, _make_causal_mask, build_alibi_tensor
if not os.getenv("PETALS_IGNORE_DEPENDENCY_VERSION"):
assert (
version.parse("4.25.1") <= version.parse(transformers.__version__) < version.parse("5.0.0")
), "Please install a proper transformers version: pip install transformers>=4.25.1,<5.0.0"
class WrappedBloomBlock(BloomBlock):
def forward(
self,
hidden_states: torch.Tensor,
*args,
attention_mask: Optional[torch.Tensor] = None,
alibi: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs
):
assert attention_mask is None
batch_size, seq_length = hidden_states.shape[:2]
past_length = 0 if layer_past is None else layer_past[0].shape[-1]
seq_length_with_past = seq_length + past_length
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
if alibi is None:
alibi = build_alibi_tensor(attention_mask, num_heads=self.num_heads, dtype=hidden_states.dtype)
attention_mask = self._prepare_attn_mask(attention_mask, (batch_size, seq_length), past_length)
return super().forward(
hidden_states, *args, attention_mask=attention_mask, alibi=alibi, layer_past=layer_past, **kwargs
)
def _prepare_attn_mask(
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
) -> torch.BoolTensor:
# create causal mask
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
combined_attention_mask = None
device = attention_mask.device
_, src_length = input_shape
if src_length > 1:
combined_attention_mask = _make_causal_mask(
torch.Size(input_shape), device=device, past_key_values_length=past_key_values_length
)
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
)
return combined_attention_mask

@ -1,132 +0,0 @@
"""
Utils for fetching pretrained model parts. Currently, this relies on huggingface transformers' from_pretrained code.
If necessary, one can rewrite this to implement a different behavior, such as:
- loading files from a local data source (e.g. S3)
- load files via BitTorrent ( https://pypi.org/project/libtorrent/ ) or IPFS( https://docs.ipfs.io/how-to )
- fetch the weights over IPoAC, using a fleet of trained pigeons ( http://www.faqs.org/rfcs/rfc1149.html )
"""
from __future__ import annotations
import itertools
import time
from typing import Optional, OrderedDict, Union
import torch
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from hivemind.utils.logging import get_logger
from transformers.modeling_utils import WEIGHTS_NAME
from transformers.models.bloom.configuration_bloom import BloomConfig
from transformers.utils import get_file_from_repo
from petals.bloom.block import WrappedBloomBlock
from petals.server.block_utils import get_block_size, resolve_block_dtype
from petals.utils.disk_cache import DEFAULT_CACHE_DIR, allow_cache_reads, allow_cache_writes, free_disk_space_for
logger = get_logger(__name__)
CLIENT_BRANCH = "main"
BLOCK_BRANCH_PREFIX = "block_"
def load_pretrained_block(
converted_model_name_or_path: str,
block_index: int,
config: Optional[BloomConfig] = None,
torch_dtype: Union[torch.dtype, str] = "auto",
use_auth_token: Optional[str] = None,
cache_dir: Optional[str] = None,
max_disk_space: Optional[int] = None,
) -> WrappedBloomBlock:
"""Load one BLOOM block from a converted model. See convert_model.py (or README.md) on how to convert it."""
assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
torch_dtype = resolve_block_dtype(config, torch_dtype)
if config is None:
config = BloomConfig.from_pretrained(converted_model_name_or_path, use_auth_token=use_auth_token)
if cache_dir is None:
cache_dir = DEFAULT_CACHE_DIR
with init_empty_weights():
block = WrappedBloomBlock(config)
state_dict = _load_state_dict(
converted_model_name_or_path,
block_index,
config,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
max_disk_space=max_disk_space,
)
# dummy load, check that keys match
report = block.load_state_dict(state_dict, strict=True)
assert not report.missing_keys, f"Some block weights are missing: {report.missing_keys}"
for param_name, _ in block.named_parameters():
assert param_name in state_dict, f"{param_name} not in state dict"
param = state_dict[param_name]
if not str(param.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
param = param.to(torch_dtype)
set_module_tensor_to_device(block, param_name, "cpu", value=param, dtype=param.dtype)
logger.info(f"Loaded {converted_model_name_or_path} block {block_index}, {report}")
return block
def _load_state_dict(
pretrained_model_name_or_path: str,
block_index: int,
config: BloomConfig,
*,
use_auth_token: Optional[str] = None,
cache_dir: str,
max_disk_space: Optional[int] = None,
min_backoff: float = 5,
) -> OrderedDict[str, torch.Tensor]:
revision = BLOCK_BRANCH_PREFIX + str(block_index)
# First, try to find the weights locally
try:
with allow_cache_reads(cache_dir):
archive_file = get_file_from_repo(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
revision=revision,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
local_files_only=True,
)
if archive_file is not None:
return torch.load(archive_file, map_location="cpu")
except Exception:
logger.debug(
f"Failed to load block {block_index} from cache. The block will be downloaded again", exc_info=True
)
# If not found, ensure that we have enough disk space to download them (maybe remove something)
for attempt_no in itertools.count():
try:
with allow_cache_writes(cache_dir):
block_size = get_block_size(config, "disk")
free_disk_space_for(
pretrained_model_name_or_path, block_size, cache_dir=cache_dir, max_disk_space=max_disk_space
)
archive_file = get_file_from_repo(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
revision=revision,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
local_files_only=False,
)
return torch.load(archive_file, map_location="cpu")
except Exception as e:
delay = min_backoff * (2**attempt_no)
logger.warning(f"Failed to load block {block_index} from HF Hub (retry in {delay:.0f} sec)", exc_info=True)
time.sleep(delay)
DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.float32, auto="auto")

@ -1,20 +0,0 @@
{
"apply_residual_connection_post_layernorm": false,
"attention_dropout": 0.0,
"attention_softmax_in_fp32": true,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_dropout": 0.0,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"masked_softmax_fusion": true,
"model_type": "bloom",
"n_embed": 14336,
"n_layer": 70,
"num_attention_heads": 112,
"pretraining_tp": 4,
"slow_but_exact": false,
"transformers_version": "4.20.0.dev0",
"use_cache": true,
"vocab_size": 250880
}

@ -1,96 +0,0 @@
import argparse
import os
import psutil
import torch.backends.quantized
import torch.nn as nn
import transformers
from hivemind.utils.logging import get_logger
from huggingface_hub import HfApi, Repository
from tqdm.auto import tqdm
from transformers.models.bloom.modeling_bloom import BloomModel
from petals.bloom.from_pretrained import BLOCK_BRANCH_PREFIX, CLIENT_BRANCH, DTYPE_MAP
from petals.client import DistributedBloomConfig
logger = get_logger(__name__)
def main():
parser = argparse.ArgumentParser(description="Load bloom layers and convert to 8-bit using torch quantization.")
parser.add_argument("--model", type=str, default="bigscience/bloom-6b3", help="Model name for from_pretrained")
parser.add_argument("--revision", type=str, default=None, help="Optional commit id from HF hub")
parser.add_argument("--torch_dtype", type=str, default="auto", help="Load initial model in this dtype")
parser.add_argument("--output_path", type=str, default="./converted_model", help="Track output repo to this folder")
parser.add_argument("--output_repo", type=str, default="bigscience/test-bloomd", help="Push to this HF hub repo")
parser.add_argument("--client_branch", type=str, default=CLIENT_BRANCH, help="Save client version to this branch")
parser.add_argument(
"--block_branch_prefix", type=str, default=BLOCK_BRANCH_PREFIX, help="Save blocks to branches with this prefix"
)
parser.add_argument(
"--commit_message", type=str, default="push-o-matic", help="Use this commit message for all parts"
)
parser.add_argument("--use_auth_token", type=str, default=None, help="auth token for from_pretrained")
parser.add_argument("--resize_token_embeddings", type=int, default=None, help="change the vocabulary size")
args = parser.parse_args()
free_ram_gb = psutil.virtual_memory().available / 2**30
if args.model == "bigscience/bloom" and free_ram_gb < 400:
logger.warning(f"ACHTUNG! converting bloom-176b will use up 350-400GB RAM, you have {free_ram_gb:.3f} free")
assert args.torch_dtype in DTYPE_MAP, f"torch_dtype must be one of {list(DTYPE_MAP.keys())}"
if os.path.exists(args.output_path) and (
len(os.listdir(args.output_path)) != 0 or not os.path.isdir(args.output_path)
):
raise FileExistsError(f"Output path {args.output_path} already exists and is not an empty directory")
logger.info(f"Loading source model {args.model} (this may take a few minutes)")
config = DistributedBloomConfig.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision
)
config.dht_prefix = args.output_repo
model = BloomModel.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision, torch_dtype=DTYPE_MAP[args.torch_dtype]
)
if args.resize_token_embeddings:
logger.info(f"Resizing token embeddings, new size = {args.resize_token_embeddings}")
model.resize_token_embeddings(args.resize_token_embeddings)
config.vocab_size = args.resize_token_embeddings
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision
)
os.makedirs(args.output_path, exist_ok=True)
api = HfApi(token=args.use_auth_token)
api.create_repo(args.output_repo, repo_type="model", exist_ok=True)
repo = Repository(args.output_path, clone_from=args.output_repo, use_auth_token=args.use_auth_token)
repo.git_pull()
transformer_blocks = model.h
logger.info(
f"Saving transformer blocks to {args.output_repo}@{args.block_branch_prefix}0"
f" - {args.output_repo}@{args.block_branch_prefix}{len(transformer_blocks)}"
)
for i, block in enumerate(tqdm(transformer_blocks)):
repo.git_checkout(args.client_branch, create_branch_ok=True)
with repo.commit(
commit_message=args.commit_message, branch=args.block_branch_prefix + str(i), track_large_files=True
):
torch.save(block.state_dict(), "./pytorch_model.bin")
logger.info(f"Saving client-side modules to {args.output_repo}@{args.client_branch}")
repo.git_checkout(args.client_branch, create_branch_ok=True)
with repo.commit(commit_message=args.commit_message, branch=args.client_branch, track_large_files=True):
model.h = nn.ModuleList()
model.save_pretrained(".")
tokenizer.save_pretrained(".")
config.save_pretrained(".")
logger.info(f"Converted {args.model} and pushed to {args.output_repo}")
if __name__ == "__main__":
main()

@ -6,7 +6,7 @@ from tqdm.auto import trange
from transformers import BloomConfig
from transformers.models.bloom.modeling_bloom import build_alibi_tensor
from petals.bloom.block import BloomBlock
from petals.models.bloom.block import BloomBlock
logger = get_logger(__name__)

@ -87,7 +87,7 @@ def main():
parser.add_argument('--alloc_timeout', type=float, default=60,
help='If the cache is full, the server will wait for this number of seconds hoping that some memory will be freed '
'before rejecting the request')
parser.add_argument('--revision', type=str, default='main',
parser.add_argument('--revision', type=str, default=None,
help="The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models"
"and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git.")

@ -1,10 +1,4 @@
from petals.client.inference_session import InferenceSession
from petals.client.remote_model import (
DistributedBloomConfig,
DistributedBloomForCausalLM,
DistributedBloomForSequenceClassification,
DistributedBloomModel,
)
from petals.client.remote_sequential import RemoteSequential
from petals.client.routing.sequence_manager import RemoteSequenceManager
from petals.client.routing.spending_policy import NoSpendingPolicy, SpendingPolicyBase

@ -0,0 +1,94 @@
import contextlib
import json
import os
import re
import tempfile
import threading
from typing import List, Optional, Tuple, Union
import torch
from hivemind.utils.logging import get_logger
from transformers import BloomPreTrainedModel, modeling_utils
from petals.utils.version import get_compatible_model_repo
logger = get_logger(__name__)
class FromPretrainedMixin:
@classmethod
def from_pretrained(
cls,
model_name_or_path: Union[str, os.PathLike, None],
*args,
low_cpu_mem_usage: Optional[bool] = None,
torch_dtype: Optional[Union[str, torch.dtype]] = None,
**kwargs,
):
model_name_or_path = get_compatible_model_repo(model_name_or_path)
if low_cpu_mem_usage is None:
low_cpu_mem_usage = True
if torch_dtype is None:
# torch_dtype=None gives torch.float32 in transformers>=4.26.0. In contrast,
# torch_dtype="auto" attempts to (1) use config.torch_dtype (if exists), (2) use dtype of the weights.
torch_dtype = "auto"
with ignore_keys(cls._keys_to_ignore_on_load_unexpected):
return super().from_pretrained(
model_name_or_path, *args, low_cpu_mem_usage=low_cpu_mem_usage, torch_dtype=torch_dtype, **kwargs
)
from_pretrained.__doc__ = BloomPreTrainedModel.from_pretrained.__doc__.replace(
"low_cpu_mem_usage(`bool`, *optional*)",
"low_cpu_mem_usage(`bool`, *optional*, defaults to `True` in Petals)",
).replace(
"torch_dtype (`str` or `torch.dtype`, *optional*)",
'torch_dtype (`str` or `torch.dtype`, *optional*, defaults to `"auto"` in Petals)',
)
_shard_config = threading.local()
_shard_config.ignored_keys = None
@contextlib.contextmanager
def ignore_keys(patterns: List[str]):
try:
prev_patterns = _shard_config.ignored_keys
_shard_config.ignored_keys = patterns
yield
finally:
_shard_config.ignored_keys = prev_patterns
def patched_get_checkpoint_shard_files(
pretrained_model_name_or_path, index_filename, *args, **kwargs
) -> Tuple[List[str], dict]:
"""Same as modeling_utils.get_checkpoint_shard_files(), but does not download shards for the ignored keys."""
should_ignore_keys = _shard_config.ignored_keys is not None
tempdir_ctx = tempfile.TemporaryDirectory() if should_ignore_keys else contextlib.nullcontext()
with tempdir_ctx as tempdir:
if should_ignore_keys:
with open(index_filename) as f:
index = json.load(f)
n_original_shards = len(set(index["weight_map"].values()))
index["weight_map"] = {
param_name: filename
for param_name, filename in index["weight_map"].items()
if all(re.search(pattern, param_name) is None for pattern in _shard_config.ignored_keys)
}
n_loaded_shards = len(set(index["weight_map"].values()))
logger.debug(f"Loading {n_loaded_shards} shards out of {n_original_shards}")
# Replace the original index with a patched JSON, where ignored keys are removed
index_filename = os.path.join(tempdir, "pytorch_model.bin.index.json")
with open(index_filename, "w") as f:
json.dump(index, f)
return original_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs)
original_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files
modeling_utils.get_checkpoint_shard_files = patched_get_checkpoint_shard_files

@ -1,10 +1,6 @@
"""
PyTorch BLOOM model that implements several memory-efficient modes.
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
See commit history for authorship.
"""
import dataclasses
import platform
from typing import Optional, Union
import psutil
import torch
@ -12,21 +8,30 @@ import torch.nn.functional as F
import torch.utils.checkpoint
from hivemind import get_logger
from torch import nn
from transformers import BloomConfig
from transformers import PretrainedConfig
logger = get_logger(__name__)
class LMHead(nn.Module):
"""
The modified language modeling head which does not create extra tensor for the linear layer with weights tied to the input
embeddings. Thus, it reduces initial memory consumption which might be crucial for large dictionaries.
In addition, it provides an effcient way to deal with half-precision word embeddings on CPU.
"""
@dataclasses.dataclass
class LMHeadConfig:
# This settings matter for running the client with dtype bfloat16 on CPU.
# If the CPU doesn't support AVX512, chunked_forward() significantly speeds up computations.
use_chunked_forward: Union[str, bool] = "auto"
chunked_forward_step: int = 16384
def __init__(self, config: BloomConfig, word_embeddings: nn.Embedding):
class LMHead(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.word_embeddings = word_embeddings
if not config.tie_word_embeddings:
self.weight = nn.Parameter(torch.zeros((config.vocab_size, config.hidden_size), requires_grad=False))
else:
self.weight = None # Will be set to get_input_embeddings().weight during loading the model
self.bias = None
self.in_features = config.hidden_size # Similar to nn.Linear attributes
self.out_features = config.vocab_size
self.use_chunked_forward = config.use_chunked_forward
if self.use_chunked_forward == "auto":
@ -42,35 +47,17 @@ class LMHead(nn.Module):
self.chunked_forward_step = config.chunked_forward_step
self._bf16_warning_shown = False
@property
def in_features(self) -> int:
return self.word_embeddings.num_embeddings
@property
def out_features(self) -> int:
return self.word_embeddings.embedding_dim
@property
def weight(self):
return self.word_embeddings.weight
@property
def bias(self):
return None
def forward(self, hidden_states):
word_embeddings = self.word_embeddings.weight
if (
word_embeddings.dtype in [torch.float16, torch.bfloat16]
and word_embeddings.device.type == "cpu"
self.weight.dtype in [torch.float16, torch.bfloat16]
and self.weight.device.type == "cpu"
and self.use_chunked_forward
):
lm_logits = self.chunked_forward(hidden_states)
else:
# Switch dtype in case word_embeddings are fp16/bf16
hidden_states = hidden_states.to(word_embeddings.dtype)
lm_logits = F.linear(hidden_states, word_embeddings)
hidden_states = hidden_states.to(self.weight.dtype)
lm_logits = F.linear(hidden_states, self.weight)
return lm_logits
def chunked_forward(self, hidden_states):
@ -80,20 +67,17 @@ class LMHead(nn.Module):
assert self.chunked_forward_step > 0, "Chunk size for chunked forward must be positive"
if not self._bf16_warning_shown:
if self.word_embeddings.weight.numel() * 4 < 0.9 * psutil.virtual_memory().total:
if self.weight.numel() * 4 < 0.9 * psutil.virtual_memory().total:
logger.warning(
"Running the client with dtype bfloat16 on CPU may be slow, since your CPU doesn't support AVX512. "
"Consider loading the model with torch_dtype='float32'"
)
self._bf16_warning_shown = True
word_embeddings = self.word_embeddings.weight
num_embeddings = self.word_embeddings.num_embeddings
hidden_states = hidden_states.float()
output = torch.empty(*hidden_states.shape[:-1], num_embeddings)
output = torch.empty(*hidden_states.shape[:-1], self.out_features)
for i in range(0, num_embeddings, self.chunked_forward_step):
chunk = word_embeddings[i : i + self.chunked_forward_step].float()
for i in range(0, self.out_features, self.chunked_forward_step):
chunk = self.weight[i : i + self.chunked_forward_step].float()
output[..., i : i + self.chunked_forward_step] = F.linear(hidden_states, chunk)
return output

@ -0,0 +1,88 @@
import dataclasses
from contextlib import contextmanager
from typing import Optional
import torch
import torch.nn as nn
from hivemind import get_logger
from transformers import PretrainedConfig
from petals.utils.misc import DUMMY
logger = get_logger(__name__)
@dataclasses.dataclass
class PTuneConfig:
pre_seq_len: int = 0 # a number of tokens for prompt tuning.
tuning_mode: Optional[str] = None # fine-tuning regime, one of [None, "ptune", "deep_ptune"]
class PTuneMixin:
_keys_to_ignore_on_load_missing = [r"(intermediate_)?prompt_embeddings\.weight$"]
def init_prompts(self, config: PretrainedConfig) -> None:
if config.tuning_mode and "ptune" in config.tuning_mode:
assert config.pre_seq_len > 0, "The number of prefix tokens must be > 0"
self.pre_seq_len = config.pre_seq_len
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
with force_non_empty_weights():
# Prompt embeddings and their optimizer stats are kept in float32 to increase ptune quality
self.prompt_embeddings = nn.Embedding(self.pre_seq_len, config.hidden_size, dtype=torch.float32)
if config.tuning_mode == "deep_ptune":
self.intermediate_prompt_embeddings = nn.Embedding(
self.pre_seq_len,
config.num_hidden_layers * config.hidden_size,
# ^-- TODO: should be num_hidden_layers - 1
dtype=torch.float32,
)
elif config.tuning_mode:
raise NotImplementedError(f"{self.tuning_mode} mode is not supported for now")
def set_requires_grad(self, value):
for p in self.parameters():
p.requires_grad = value
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1)
prefix_tokens = prefix_tokens.to(self.word_embeddings.weight.device)
prompts = self.prompt_embeddings(prefix_tokens)
if self.config.tuning_mode == "deep_ptune":
intermediate_prompts = self.intermediate_prompt_embeddings(prefix_tokens)
intermediate_prompts = intermediate_prompts.view(
batch_size,
self.pre_seq_len,
self.config.num_hidden_layers,
self.config.hidden_size
# TODO: should be num_hidden_layers - 1
)
intermediate_prompts = intermediate_prompts.permute([2, 0, 1, 3])
else:
intermediate_prompts = DUMMY
dtype = self.word_embeddings.weight.dtype
return prompts.to(dtype), intermediate_prompts.to(dtype)
_original_register_parameter = nn.Module.register_parameter
@contextmanager
def force_non_empty_weights():
"""
This context manager allows to bypass the accelerate.init_empty_weights() context manager
(that forces all nn.Parameters to be PyTorch's meta tensors) used when low_cpu_mem_usage=True.
The transformers library should replace all meta tensors by empty tensors by itself
but this feature does not work due to a bug ([1] fails if `add_prefix_to_model == True`).
[1] https://github.com/huggingface/transformers/blob/ab9fe45236cd99b8797df78219438f8f6662bb42/src/transformers/modeling_utils.py#L2515
"""
try:
possibly_patched_register_parameter = nn.Module.register_parameter
nn.Module.register_parameter = _original_register_parameter
yield
finally:
nn.Module.register_parameter = possibly_patched_register_parameter

@ -1,268 +0,0 @@
from contextlib import contextmanager
from typing import List, Optional, Union
import hivemind
import torch
import torch.nn as nn
from hivemind.utils.logging import get_logger
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from transformers.models.bloom import (
BloomConfig,
BloomForCausalLM,
BloomForSequenceClassification,
BloomModel,
BloomPreTrainedModel,
)
from petals.bloom.modeling_utils import LMHead
from petals.client.remote_generation import RemoteGenerationMixin
from petals.client.remote_sequential import RemoteSequential
from petals.client.routing.sequence_manager import SequenceManagerConfig
from petals.constants import PUBLIC_INITIAL_PEERS
from petals.utils.misc import DUMMY
logger = get_logger(__name__)
class DistributedBloomConfig(BloomConfig, SequenceManagerConfig):
"""
A bloom config that contains information about DHT peers.
To create a distributed model, one must provide dht_prefix and either initial_peers or dht.
"""
initial_peers: List[str] = PUBLIC_INITIAL_PEERS # a list of initial peers for hivemind DHT
dht_prefix: str # a prefix for all dht keys that correspond to this model (usually equal to model name)
daemon_startup_timeout: int = 60 # timeout for the libp2p daemon connecting to initial peers
pre_seq_len: int = 0 # a number of tokens for prompt tuning.
tuning_mode: Optional[str] = None # fine-tuning regime, one of [None, "ptune", "deep_ptune"]
# This settings matter for running the client with dtype bfloat16 on CPU.
# If the CPU doesn't support AVX512, chunked_forward() significantly speeds up computations.
use_chunked_forward: Union[str, bool] = "auto"
chunked_forward_step: int = 16384
original_register_parameter = nn.Module.register_parameter
@contextmanager
def force_non_empty_weights():
"""
This context manager allows to bypass the accelerate.init_empty_weights() context manager
(that forces all nn.Parameters to be PyTorch's meta tensors) used when low_cpu_mem_usage=True.
The transformers library should replace all meta tensors by empty tensors by itself
but this feature does not work due to a bug ([1] fails if `add_prefix_to_model == True`).
[1] https://github.com/huggingface/transformers/blob/ab9fe45236cd99b8797df78219438f8f6662bb42/src/transformers/modeling_utils.py#L2515
"""
try:
possibly_patched_register_parameter = nn.Module.register_parameter
nn.Module.register_parameter = original_register_parameter
yield
finally:
nn.Module.register_parameter = possibly_patched_register_parameter
class _FromPretrainedDefaultsMixin:
@classmethod
def from_pretrained(
cls,
*args,
low_cpu_mem_usage: Optional[bool] = None,
torch_dtype: Optional[Union[str, torch.dtype]] = None,
**kwargs,
):
if low_cpu_mem_usage is None:
low_cpu_mem_usage = True
if torch_dtype is None:
# torch_dtype=None gives torch.float32 in transformers>=4.26.0. In contrast,
# torch_dtype="auto" attempts to (1) use config.torch_dtype (if exists), (2) use dtype of the weights.
torch_dtype = "auto"
return super().from_pretrained(*args, low_cpu_mem_usage=low_cpu_mem_usage, torch_dtype=torch_dtype, **kwargs)
from_pretrained.__doc__ = BloomPreTrainedModel.from_pretrained.__doc__.replace(
"low_cpu_mem_usage(`bool`, *optional*)",
"low_cpu_mem_usage(`bool`, *optional*, defaults to `True` in Petals)",
).replace(
"torch_dtype (`str` or `torch.dtype`, *optional*)",
'torch_dtype (`str` or `torch.dtype`, *optional*, defaults to `"auto"` in Petals)',
)
class DistributedBloomModel(_FromPretrainedDefaultsMixin, BloomModel):
"""BloomModel, but all transformer layers are hosted by the swarm"""
_keys_to_ignore_on_load_missing = BloomModel._keys_to_ignore_on_load_missing + [
r"^(intermediate_)?prompt_embeddings\.weight$",
]
config_class = DistributedBloomConfig
def __init__(self, config: DistributedBloomConfig, *, dht: Optional[hivemind.DHT] = None):
assert config.dht_prefix, "Could not find dht_prefix in config, please create model with dht_prefix=..."
assert config.initial_peers or dht is not None, "Please specify `config.initial_peers` or `dht`"
n_layer, config.n_layer = config.n_layer, 0 # temporarily set n_layer to 0 to prevent layer initialization
super().__init__(config)
assert len(self.h) == 0
config.n_layer = n_layer
self.h = RemoteSequential(config, dht=dht)
# Forbid accumulate grads for embeddings and layernorm
self.set_requires_grad(False)
if config.tuning_mode and "ptune" in config.tuning_mode:
assert config.pre_seq_len > 0, "The number of prefix tokens must be > 0"
self.pre_seq_len = config.pre_seq_len
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
with force_non_empty_weights():
if self.word_embeddings_layernorm.weight.dtype in (torch.float16, torch.bfloat16):
logger.info(
"Prompt embeddings and their optimizer statistics will be kept in float32 "
"to increase ptune quality"
)
self.prompt_embeddings = nn.Embedding(self.pre_seq_len, config.hidden_size, dtype=torch.float32)
if config.tuning_mode == "deep_ptune":
self.intermediate_prompt_embeddings = nn.Embedding(
self.pre_seq_len,
config.num_hidden_layers * config.hidden_size,
# ^-- TODO: should be num_hidden_layers - 1
dtype=torch.float32,
)
elif config.tuning_mode:
raise NotImplementedError(f"{self.tuning_mode} mode is not supported for now")
def set_requires_grad(self, value):
for p in self.parameters():
p.requires_grad = value
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1)
prefix_tokens = prefix_tokens.to(self.word_embeddings.weight.device)
prompts = self.prompt_embeddings(prefix_tokens)
if self.config.tuning_mode == "deep_ptune":
intermediate_prompts = self.intermediate_prompt_embeddings(prefix_tokens)
intermediate_prompts = intermediate_prompts.view(
batch_size, self.pre_seq_len, len(self.h), self.config.hidden_size # TODO: should be len(self.h) - 1
)
intermediate_prompts = intermediate_prompts.permute([2, 0, 1, 3])
else:
intermediate_prompts = DUMMY
dtype = self.word_embeddings.weight.dtype
return prompts.to(dtype), intermediate_prompts.to(dtype)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
):
assert attention_mask is None, "DistributedBloomModel does not support attention masks right now"
for k, v in kwargs.items():
if not (v is None or v is False):
logger.debug(f"Extra keyword arguments are not yet supported (got {k} = {v})")
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
batch_size = inputs_embeds.shape[0]
prompts, intermediate_prompts = self.get_prompt(batch_size)
inputs_embeds = torch.cat([prompts, inputs_embeds], dim=1)
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
hidden_states = self.h(hidden_states, prompts=intermediate_prompts)
else:
hidden_states = self.h(hidden_states)
# Remove prefix
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
hidden_states = hidden_states[:, self.pre_seq_len :]
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=None,
hidden_states=None,
attentions=None,
)
class DistributedBloomForCausalLM(_FromPretrainedDefaultsMixin, RemoteGenerationMixin, BloomForCausalLM):
"""DistributedBloomForCausalLM, but all transformer layers are hosted by the swarm"""
_keys_to_ignore_on_load_missing = (
BloomForCausalLM._keys_to_ignore_on_load_missing
+ DistributedBloomModel._keys_to_ignore_on_load_missing
+ [r"^lm_head.word_embeddings\.weight$"] # Missing since they are shared with input embeddings
)
config_class = DistributedBloomConfig
def __init__(self, config: DistributedBloomConfig):
BloomPreTrainedModel.__init__(self, config)
self.transformer = DistributedBloomModel(config)
self.lm_head = LMHead(config, self.transformer.word_embeddings)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.transformer.word_embeddings
def get_output_embeddings(self):
if self.config.tie_word_embeddings:
return None
return self.lm_head
def set_input_embeddings(self, new_embeddings: nn.Embedding):
assert isinstance(new_embeddings, nn.Embedding)
self.transformer.word_embeddings = self.lm_head.word_embeddings = new_embeddings
assert self.lm_head.bias is None or len(self.lm_head.bias) == new_embeddings.num_embeddings
def set_output_embeddings(self, new_lm_head: nn.Linear):
with torch.no_grad():
self.lm_head.word_embeddings.weight[...] = new_lm_head.weight
self.lm_head.bias[...] = new_lm_head.bias
class DistributedBloomForSequenceClassification(_FromPretrainedDefaultsMixin, BloomForSequenceClassification):
_keys_to_ignore_on_load_missing = (
BloomForSequenceClassification._keys_to_ignore_on_load_missing
+ DistributedBloomModel._keys_to_ignore_on_load_missing
)
config_class = DistributedBloomConfig
def __init__(self, config: DistributedBloomConfig):
BloomPreTrainedModel.__init__(self, config)
self.num_labels = config.num_labels
self.transformer = DistributedBloomModel(config)
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False).to(config.torch_dtype)
# Initialize weights and apply final processing
self.post_init()

@ -6,9 +6,8 @@ import torch
from hivemind import DHT, get_logger
from torch import nn
import petals.client
from petals.client.inference_session import InferenceSession
from petals.client.routing.sequence_manager import RemoteSequenceManager
from petals.client.routing.sequence_manager import RemoteSequenceManager, SequenceManagerConfig
from petals.client.sequential_autograd import _RemoteSequentialAutogradFunction
from petals.data_structures import UID_DELIMITER
from petals.utils.misc import DUMMY
@ -23,7 +22,7 @@ class RemoteSequential(nn.Module):
def __init__(
self,
config: petals.client.DistributedBloomConfig,
config: SequenceManagerConfig,
*,
sequence_manager: Optional[RemoteSequenceManager] = None,
dht: Optional[DHT] = None,
@ -40,7 +39,7 @@ class RemoteSequential(nn.Module):
if start_block is None:
start_block = 0
if end_block is None:
end_block = self.config.n_layer
end_block = self.config.num_hidden_layers
block_uids = tuple(f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(start_block, end_block))
sequence_manager = RemoteSequenceManager(config, block_uids, dht=dht)
self.sequence_manager = sequence_manager

@ -20,6 +20,7 @@ from hivemind.utils.logging import get_logger
import petals.dht_utils
from petals.client.routing.sequence_info import RemoteSequenceInfo
from petals.client.routing.spending_policy import NoSpendingPolicy
from petals.constants import PUBLIC_INITIAL_PEERS
from petals.data_structures import ModuleUID, RemoteSpanInfo, ServerState
from petals.server.handler import TransformerConnectionHandler
@ -28,6 +29,10 @@ logger = get_logger(__name__)
@dataclasses.dataclass
class SequenceManagerConfig:
initial_peers: Sequence[str] = tuple(PUBLIC_INITIAL_PEERS) # a list of initial peers for hivemind DHT
dht_prefix: Optional[str] = None # a prefix for all dht keys that correspond to this model (default: model name)
daemon_startup_timeout: int = 60 # timeout for the libp2p daemon connecting to initial peers
allowed_servers: Optional[Collection[Union[PeerID, str]]] = None # if defined, send requests only to these servers
request_timeout: float = 3 * 60 # timeout for forward/backward/inference requests
@ -73,6 +78,8 @@ class RemoteSequenceManager:
dht: Optional[DHT] = None,
state: Optional[SequenceManagerState] = None,
):
assert config.initial_peers or dht is not None, "Please specify `config.initial_peers` or `dht`"
assert config.dht_prefix, "Could not find dht_prefix in config, please create model with dht_prefix=..."
assert len(block_uids) > 0, "Sequences must contain at least one block"
self.config = config
@ -84,7 +91,7 @@ class RemoteSequenceManager:
dht = DHT(
initial_peers=config.initial_peers,
client_mode=True,
num_workers=config.n_layer,
num_workers=config.num_hidden_layers,
startup_timeout=config.daemon_startup_timeout,
start=True,
)

@ -0,0 +1,2 @@
from petals.models.bloom import *
from petals.models.llama import *

@ -0,0 +1,7 @@
from petals.models.bloom.block import WrappedBloomBlock
from petals.models.bloom.config import DistributedBloomConfig
from petals.models.bloom.model import (
DistributedBloomForCausalLM,
DistributedBloomForSequenceClassification,
DistributedBloomModel,
)

@ -0,0 +1,32 @@
"""
Bloom intermediate layer
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
See commit history for authorship.
"""
from typing import Optional, Tuple
import torch
from transformers.models.bloom.modeling_bloom import BloomBlock, BloomModel, build_alibi_tensor
class WrappedBloomBlock(BloomBlock):
def forward(
self,
hidden_states: torch.Tensor,
*args,
attention_mask: Optional[torch.Tensor] = None,
alibi: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs
):
assert attention_mask is None, "Non-causal attention masks are not supported yet"
batch_size, seq_length = hidden_states.shape[:2]
past_length = 0 if layer_past is None else layer_past[0].shape[-1]
seq_length_with_past = seq_length + past_length
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
if alibi is None:
alibi = build_alibi_tensor(attention_mask, num_heads=self.num_heads, dtype=hidden_states.dtype)
attention_mask = BloomModel._prepare_attn_mask(None, attention_mask, (batch_size, seq_length), past_length)
return super().forward(
hidden_states, *args, attention_mask=attention_mask, alibi=alibi, layer_past=layer_past, **kwargs
)

@ -0,0 +1,35 @@
import os
from typing import Optional, Union
from hivemind import get_logger
from transformers.models.bloom import BloomConfig
from transformers.models.bloom.modeling_bloom import BloomAttention
from petals.client.lm_head import LMHeadConfig
from petals.client.ptune import PTuneConfig
from petals.client.routing.sequence_manager import SequenceManagerConfig
from petals.models.bloom.block import WrappedBloomBlock
from petals.utils.auto_config import AutoDistributedConfig
from petals.utils.version import get_compatible_model_repo
logger = get_logger(__name__)
class DistributedBloomConfig(BloomConfig, SequenceManagerConfig, PTuneConfig, LMHeadConfig):
block_class = WrappedBloomBlock
attn_class = BloomAttention
block_prefix = "h"
@classmethod
def from_pretrained(
cls, model_name_or_path: Union[str, os.PathLike, None], *args, dht_prefix: Optional[str] = None, **kwargs
):
loading_from_repo = model_name_or_path is not None and not os.path.isdir(model_name_or_path)
if loading_from_repo and dht_prefix is None:
# We need "-petals" for backward compatibility with Petals < 1.2.0
dht_prefix = str(model_name_or_path) + "-petals"
logger.info(f"Using DHT prefix: {dht_prefix}")
return super().from_pretrained(model_name_or_path, *args, dht_prefix=dht_prefix, **kwargs)
AutoDistributedConfig.register(DistributedBloomConfig)

@ -0,0 +1,134 @@
from typing import Optional
import hivemind
import torch
import torch.nn as nn
from hivemind.utils.logging import get_logger
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from transformers.models.bloom import BloomForCausalLM, BloomForSequenceClassification, BloomModel, BloomPreTrainedModel
from petals.client.from_pretrained import FromPretrainedMixin
from petals.client.lm_head import LMHead
from petals.client.ptune import PTuneMixin
from petals.client.remote_generation import RemoteGenerationMixin
from petals.client.remote_sequential import RemoteSequential
from petals.models.bloom.config import DistributedBloomConfig
logger = get_logger(__name__)
class DistributedBloomModel(FromPretrainedMixin, PTuneMixin, BloomModel):
"""BloomModel, but all transformer layers are hosted by the swarm"""
_keys_to_ignore_on_load_missing = (
BloomModel._keys_to_ignore_on_load_missing + PTuneMixin._keys_to_ignore_on_load_missing
)
_keys_to_ignore_on_load_unexpected = [r"^h\."]
config_class = DistributedBloomConfig
def __init__(self, config: DistributedBloomConfig, *, dht: Optional[hivemind.DHT] = None):
n_layer, config.num_hidden_layers = config.num_hidden_layers, 0 # Prevent initialization
super().__init__(config)
assert len(self.h) == 0
config.num_hidden_layers = n_layer
self.h = RemoteSequential(config, dht=dht)
self.set_requires_grad(False) # Forbid accumulate grads for embeddings and layernorm
self.init_prompts(config)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
):
assert attention_mask is None, f"{self.__class__.__name__} does not support attention masks right now"
for k, v in kwargs.items():
if not (v is None or v is False):
logger.debug(f"Extra keyword arguments are not yet supported (got {k} = {v})")
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
batch_size = inputs_embeds.shape[0]
prompts, intermediate_prompts = self.get_prompt(batch_size)
inputs_embeds = torch.cat([prompts, inputs_embeds], dim=1)
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
hidden_states = self.h(hidden_states, prompts=intermediate_prompts)
else:
hidden_states = self.h(hidden_states)
# Remove prefix
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
hidden_states = hidden_states[:, self.pre_seq_len :]
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=None,
hidden_states=None,
attentions=None,
)
class DistributedBloomForCausalLM(FromPretrainedMixin, RemoteGenerationMixin, BloomForCausalLM):
_keys_to_ignore_on_load_missing = (
BloomForCausalLM._keys_to_ignore_on_load_missing
+ DistributedBloomModel._keys_to_ignore_on_load_missing
+ [r"^lm_head\."] # Missing since they are shared with input embeddings
)
_keys_to_ignore_on_load_unexpected = DistributedBloomModel._keys_to_ignore_on_load_unexpected
config_class = DistributedBloomConfig
def __init__(self, config: DistributedBloomConfig):
BloomPreTrainedModel.__init__(self, config)
self.transformer = DistributedBloomModel(config)
self.lm_head = LMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
class DistributedBloomForSequenceClassification(FromPretrainedMixin, BloomForSequenceClassification):
_keys_to_ignore_on_load_missing = (
BloomForSequenceClassification._keys_to_ignore_on_load_missing
+ DistributedBloomModel._keys_to_ignore_on_load_missing
)
_keys_to_ignore_on_load_unexpected = DistributedBloomModel._keys_to_ignore_on_load_unexpected
config_class = DistributedBloomConfig
def __init__(self, config: DistributedBloomConfig):
BloomPreTrainedModel.__init__(self, config)
self.num_labels = config.num_labels
self.transformer = DistributedBloomModel(config)
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False).to(config.torch_dtype)
# Initialize weights and apply final processing
self.post_init()

@ -0,0 +1,7 @@
from petals.models.llama.block import WrappedLlamaBlock
from petals.models.llama.config import DistributedLlamaConfig
from petals.models.llama.model import (
DistributedLlamaForCausalLM,
DistributedLlamaForSequenceClassification,
DistributedLlamaModel,
)

@ -0,0 +1,87 @@
"""
LLaMA intermediate layer
Based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
See commit history for authorship.
"""
from typing import Optional, Tuple
import torch
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaModel
class WrappedLlamaBlock(LlamaDecoderLayer):
def forward(
self,
hidden_states: torch.Tensor,
*args,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
batch_size, seq_length, _ = hidden_states.shape
seq_length_with_past = seq_length
past_key_values_length = 0
past_key_value = layer_past
if past_key_value is not None:
past_key_values_length = past_key_value[0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
past_key_value = self._reorder_cache_from_bloom_to_llama(past_key_value, batch_size, past_key_values_length)
if position_ids is None:
device = hidden_states.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device
)
attention_mask = LlamaModel._prepare_decoder_attention_mask(
None, attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
)
outputs = super().forward(
hidden_states,
*args,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
**kwargs,
)
if use_cache:
present_key_value = outputs[-1]
present_key_value = self._reorder_cache_from_llama_to_bloom(
present_key_value, batch_size, seq_length_with_past
)
outputs = outputs[:-1] + (present_key_value,)
return outputs
def _reorder_cache_from_bloom_to_llama(
self, key_value: Tuple[torch.Tensor], batch_size: int, seq_length: int
) -> Tuple[torch.Tensor]:
key_states, value_states = key_value
key_states = key_states.permute(0, 2, 1)
key_states = key_states.view(batch_size, self.self_attn.num_heads, seq_length, self.self_attn.head_dim)
value_states = value_states.view(*key_states.shape)
return (key_states, value_states)
def _reorder_cache_from_llama_to_bloom(
self, key_value: Tuple[torch.Tensor], batch_size: int, seq_length: int
) -> Tuple[torch.Tensor]:
key_states, value_states = key_value
value_states = value_states.view(batch_size * self.self_attn.num_heads, seq_length, self.self_attn.head_dim)
key_states = key_states.view(*value_states.shape)
key_states = key_states.permute(0, 2, 1)
return (key_states, value_states)

@ -0,0 +1,35 @@
import os
from typing import Optional, Union
from hivemind import get_logger
from transformers.models.llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaAttention
from petals.client.lm_head import LMHeadConfig
from petals.client.ptune import PTuneConfig
from petals.client.routing.sequence_manager import SequenceManagerConfig
from petals.models.llama.block import WrappedLlamaBlock
from petals.utils.auto_config import AutoDistributedConfig
logger = get_logger(__name__)
class DistributedLlamaConfig(LlamaConfig, SequenceManagerConfig, PTuneConfig, LMHeadConfig):
block_class = WrappedLlamaBlock
attn_class = LlamaAttention
block_prefix = "model.layers"
@classmethod
def from_pretrained(
cls, model_name_or_path: Union[str, os.PathLike, None], *args, dht_prefix: Optional[str] = None, **kwargs
):
loading_from_repo = model_name_or_path is not None and not os.path.isdir(model_name_or_path)
if loading_from_repo and dht_prefix is None:
dht_prefix = str(model_name_or_path)
if "/" in dht_prefix: # If present, strip repository name to merge blocks hosted by different accounts
dht_prefix = dht_prefix[dht_prefix.rfind("/") + 1 :]
logger.info(f"Using DHT prefix: {dht_prefix}")
return super().from_pretrained(model_name_or_path, *args, dht_prefix=dht_prefix, **kwargs)
AutoDistributedConfig.register(DistributedLlamaConfig)

@ -0,0 +1,152 @@
from typing import Optional
import hivemind
import torch
import torch.nn as nn
from hivemind.utils.logging import get_logger
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
from petals.client.from_pretrained import FromPretrainedMixin
from petals.client.lm_head import LMHead
from petals.client.ptune import PTuneMixin
from petals.client.remote_generation import RemoteGenerationMixin
from petals.client.remote_sequential import RemoteSequential
from petals.models.llama.config import DistributedLlamaConfig
logger = get_logger(__name__)
class DistributedLlamaModel(FromPretrainedMixin, PTuneMixin, LlamaModel):
"""LlamaModel, but all transformer layers are hosted by the swarm"""
_keys_to_ignore_on_load_missing = PTuneMixin._keys_to_ignore_on_load_missing
_keys_to_ignore_on_load_unexpected = LlamaModel._keys_to_ignore_on_load_unexpected + [r"^model\.layers\."]
config_class = DistributedLlamaConfig
def __init__(self, config: DistributedLlamaConfig, *, dht: Optional[hivemind.DHT] = None):
n_layer, config.num_hidden_layers = config.num_hidden_layers, 0 # Prevent initialization
super().__init__(config)
assert len(self.layers) == 0
config.num_hidden_layers = n_layer
self.layers = RemoteSequential(config, dht=dht)
self.set_requires_grad(False) # Forbid accumulate grads for embeddings and layernorm
self.init_prompts(config)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> BaseModelOutputWithPast:
assert attention_mask is None, f"{self.__class__.__name__} does not support attention masks right now"
for k, v in kwargs.items():
if not (v is None or v is False):
logger.debug(f"Extra keyword arguments are not yet supported (got {k} = {v})")
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
batch_size = inputs_embeds.shape[0]
prompts, intermediate_prompts = self.get_prompt(batch_size)
inputs_embeds = torch.cat([prompts, inputs_embeds], dim=1)
hidden_states = inputs_embeds
output_shape = input_shape + (hidden_states.size(-1),)
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
hidden_states = self.layers(hidden_states, prompts=intermediate_prompts)
else:
hidden_states = self.layers(hidden_states)
# Remove prefix
if self.config.tuning_mode and "ptune" in self.config.tuning_mode:
hidden_states = hidden_states[:, self.pre_seq_len :]
# Add last hidden state
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.view(output_shape)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=None,
hidden_states=None,
attentions=None,
)
@property
def word_embeddings(self) -> nn.Embedding: # For compatibility with RemoteGenerationMixin
return self.embed_tokens
@property
def word_embeddings_layernorm(self) -> nn.Module: # For compatibility with RemoteGenerationMixin
return nn.Identity()
@property
def h(self) -> RemoteSequential: # For compatibility with RemoteGenerationMixin
return self.layers
@property
def ln_f(self) -> nn.Module: # For compatibility with RemoteGenerationMixin
return self.norm
class DistributedLlamaForCausalLM(FromPretrainedMixin, RemoteGenerationMixin, LlamaForCausalLM):
_keys_to_ignore_on_load_missing = DistributedLlamaModel._keys_to_ignore_on_load_missing
_keys_to_ignore_on_load_unexpected = DistributedLlamaModel._keys_to_ignore_on_load_unexpected
config_class = DistributedLlamaConfig
def __init__(self, config: DistributedLlamaConfig):
LlamaPreTrainedModel.__init__(self, config)
self.model = DistributedLlamaModel(config)
self.lm_head = LMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
@property
def transformer(self) -> DistributedLlamaModel: # For compatibility with RemoteGenerationMixin
return self.model
class DistributedLlamaForSequenceClassification(FromPretrainedMixin, LlamaForSequenceClassification):
_keys_to_ignore_on_load_missing = (
LlamaForSequenceClassification._keys_to_ignore_on_load_missing
+ DistributedLlamaModel._keys_to_ignore_on_load_missing
)
_keys_to_ignore_on_load_unexpected = DistributedLlamaModel._keys_to_ignore_on_load_unexpected
config_class = DistributedLlamaConfig
def __init__(self, config):
LlamaPreTrainedModel.__init__(self, config)
self.num_labels = config.num_labels
self.model = DistributedLlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@property
def transformer(self) -> DistributedLlamaModel: # For compatibility with RemoteGenerationMixin
return self.model

@ -1,4 +1,3 @@
"""Code for serving bloom blocks via hivemind-server"""
from __future__ import annotations
from collections import Counter
@ -12,8 +11,7 @@ from hivemind.moe.server.module_backend import ModuleBackend
from hivemind.utils import get_logger
from tensor_parallel import TensorParallel
from tensor_parallel.tensor_parallel import PerDeviceTensors
from transformers import BloomConfig
from transformers.models.bloom.modeling_bloom import BloomAttention
from transformers import PretrainedConfig
from petals.data_structures import InferenceMetadata
from petals.server.memory_cache import MemoryCache
@ -24,17 +22,19 @@ logger = get_logger(__name__)
class TransformerBackend(ModuleBackend):
"""A wrapper for a BLOOM block that can process requests for BLOOM layer forward, backward and inference"""
"""A wrapper for a transformer block that can process requests for forward, backward and inference"""
def __init__(self, *args, config: BloomConfig, memory_cache: MemoryCache, backend_dtype: torch.dtype, **kwargs):
def __init__(
self, *args, config: PretrainedConfig, memory_cache: MemoryCache, backend_dtype: torch.dtype, **kwargs
):
super().__init__(*args, **kwargs)
assert isinstance(self.module, TensorParallel)
self.config = config
self.memory_cache = memory_cache
for name, param in self.module.named_parameters():
assert not param.requires_grad, f"Bloom layer parameters must not accumulate gradients, but {name} does"
assert not param.requires_grad, f"Block parameters must not accumulate gradients, but {name} does"
for name, buf in self.module.named_buffers():
assert not buf.requires_grad, f"Bloom layer parameters must not accumulate gradients, but {name} does"
assert not buf.requires_grad, f"Block parameters must not accumulate gradients, but {name} does"
max_batch_size = self.forward_pool.max_batch_size
device = self.module.devices[self.module.output_device_index]
@ -52,9 +52,10 @@ class TransformerBackend(ModuleBackend):
self.shard_num_heads = []
for shard in self.module.module_shards:
for submodule in shard.modules():
if isinstance(submodule, BloomAttention):
if isinstance(submodule, config.attn_class):
self.shard_num_heads.append(submodule.num_heads)
assert len(self.shard_num_heads) == len(self.module.devices) and sum(self.shard_num_heads) == config.n_head
assert len(self.shard_num_heads) == len(self.module.devices)
assert sum(self.shard_num_heads) == config.num_attention_heads
self.inference_schema = (
(
@ -71,7 +72,7 @@ class TransformerBackend(ModuleBackend):
def get_inference_cache_descriptors(self, batch_size: int, max_length: int) -> Sequence[TensorDescriptor]:
"""Create tensor descriptors for attention cache tensors used during inference_step"""
head_dim = self.config.hidden_size // self.config.n_head
head_dim = self.config.hidden_size // self.config.num_attention_heads
cache_tensors = []
for device, num_heads in zip(self.module.devices, self.shard_num_heads):
keys = TensorDescriptor((batch_size, num_heads, head_dim, max_length), dtype=self.dtype, device=device)

@ -2,12 +2,10 @@ from typing import Optional, Union
import torch
from accelerate import init_empty_weights
from transformers import BloomConfig
from transformers import PretrainedConfig
from petals.bloom.block import WrappedBloomBlock
def resolve_block_dtype(config: BloomConfig, dtype: Union[str, torch.dtype]) -> torch.dtype:
def resolve_block_dtype(config: PretrainedConfig, dtype: Union[str, torch.dtype]) -> torch.dtype:
"""If dtype is "auto", resolves it using BloomConfig. Returns `dtype` intact otherwise."""
if dtype not in ("auto", None):
return dtype
@ -17,7 +15,7 @@ def resolve_block_dtype(config: BloomConfig, dtype: Union[str, torch.dtype]) ->
def get_block_size(
config: BloomConfig,
config: PretrainedConfig,
location: str,
*,
dtype: Optional[Union[str, torch.dtype]] = None,
@ -30,7 +28,7 @@ def get_block_size(
), 'get_block_size(..., location="memory") requires to specify dtype and load_in_8bit for calculations'
with init_empty_weights(include_buffers=True):
block = WrappedBloomBlock(config)
block = config.block_class(config)
n_params = sum(param.numel() for param in block.parameters())
if location == "memory" and load_in_8bit:

@ -0,0 +1,175 @@
"""
Utils for fetching pretrained model parts. Currently, this relies on huggingface transformers' from_pretrained code.
If necessary, one can rewrite this to implement a different behavior, such as:
- loading files from a local data source (e.g. S3)
- load files via BitTorrent ( https://pypi.org/project/libtorrent/ ) or IPFS( https://docs.ipfs.io/how-to )
- fetch the weights over IPoAC, using a fleet of trained pigeons ( http://www.faqs.org/rfcs/rfc1149.html )
"""
import json
import time
from typing import Dict, Optional, Union
import torch
import torch.nn as nn
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from hivemind.utils.logging import get_logger
from huggingface_hub import get_hf_file_metadata, hf_hub_url
from transformers import PretrainedConfig
from transformers.utils import get_file_from_repo
from petals.server.block_utils import resolve_block_dtype
from petals.utils.auto_config import AutoDistributedConfig
from petals.utils.disk_cache import DEFAULT_CACHE_DIR, allow_cache_reads, allow_cache_writes, free_disk_space_for
logger = get_logger(__name__)
def load_pretrained_block(
model_name: str,
block_index: int,
*,
config: Optional[PretrainedConfig] = None,
torch_dtype: Union[torch.dtype, str] = "auto",
revision: Optional[str] = None,
use_auth_token: Optional[str] = None,
cache_dir: Optional[str] = None,
max_disk_space: Optional[int] = None,
) -> nn.Module:
if config is None:
config = AutoDistributedConfig.from_pretrained(model_name, use_auth_token=use_auth_token)
if cache_dir is None:
cache_dir = DEFAULT_CACHE_DIR
assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
torch_dtype = resolve_block_dtype(config, torch_dtype)
with init_empty_weights():
block = config.block_class(config)
block_prefix = f"{config.block_prefix}.{block_index}."
state_dict = _load_state_dict_from_repo(
model_name,
block_prefix,
revision=revision,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
max_disk_space=max_disk_space,
)
# dummy load, check that keys match
report = block.load_state_dict(state_dict, strict=True)
assert not report.missing_keys, f"Some block weights are missing: {report.missing_keys}"
for param_name, _ in block.named_parameters():
assert param_name in state_dict, f"{param_name} not in state dict"
param = state_dict[param_name]
if not str(param.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
param = param.to(torch_dtype)
set_module_tensor_to_device(block, param_name, "cpu", value=param, dtype=param.dtype)
logger.info(f"Loaded {model_name} block {block_index}, {report}")
return block
StateDict = Dict[str, torch.Tensor]
def _load_state_dict_from_repo(
model_name: str,
block_prefix: str,
*,
revision: Optional[str] = None,
use_auth_token: Optional[str] = None,
cache_dir: str,
max_disk_space: Optional[int] = None,
) -> StateDict:
index_file = get_file_from_repo(
model_name, filename="pytorch_model.bin.index.json", use_auth_token=use_auth_token, cache_dir=cache_dir
)
if index_file is not None: # Sharded model
with open(index_file) as f:
index = json.load(f)
filenames = {
filename for param_name, filename in index["weight_map"].items() if param_name.startswith(block_prefix)
}
if not filenames:
raise RuntimeError(f"Block {block_prefix}* not found in the index: {index['weight_map']}")
else: # Non-sharded model
filenames = {"pytorch_model.bin"}
logger.debug(f"Loading {block_prefix}* from {filenames}")
state_dict = {}
for filename in filenames:
shard_state_dict = _load_state_dict_from_file(
model_name,
filename,
revision=revision,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
max_disk_space=max_disk_space,
)
shard_state_dict = {
param_name[len(block_prefix) :]: param
for param_name, param in shard_state_dict.items()
if param_name.startswith(block_prefix)
} # Remove unused parameters from memory
state_dict.update(shard_state_dict)
return state_dict
def _load_state_dict_from_file(
model_name: str,
filename: str,
*,
revision: Optional[str] = None,
use_auth_token: Optional[str] = None,
cache_dir: str,
max_disk_space: Optional[int] = None,
delay: float = 30,
) -> StateDict:
# First, try to find the weights locally
try:
with allow_cache_reads(cache_dir):
path = get_file_from_repo(
model_name,
filename,
revision=revision,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
local_files_only=True,
)
if path is not None:
return torch.load(path, map_location="cpu")
except Exception:
logger.warning(f"Cache for file {filename} is corrupted, it will be downloaded again", exc_info=True)
# If not found, ensure that we have enough disk space to download them (maybe remove something)
while True:
try:
with allow_cache_writes(cache_dir):
url = hf_hub_url(model_name, filename, revision=revision)
file_size = get_hf_file_metadata(url, token=use_auth_token).size
if file_size is not None:
free_disk_space_for(model_name, file_size, cache_dir=cache_dir, max_disk_space=max_disk_space)
else:
logger.warning(f"Failed to fetch size of file {filename} from repo {model_name}")
path = get_file_from_repo(
model_name,
filename,
revision=revision,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
local_files_only=False,
)
if path is None:
raise RuntimeError(f"File {filename} does not exist in repo {model_name}")
return torch.load(path, map_location="cpu")
except Exception as e:
logger.warning(f"Failed to load file {filename} from HF Hub (retry in {delay:.0f} sec)", exc_info=True)
time.sleep(delay)
DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.float32, auto="auto")

@ -14,21 +14,23 @@ from hivemind.moe.server.layers import add_custom_models_from_file
from hivemind.moe.server.runtime import Runtime
from hivemind.proto.runtime_pb2 import CompressionType
from hivemind.utils.logging import get_logger
from transformers import BloomConfig
from transformers import PretrainedConfig
from petals.bloom.from_pretrained import DTYPE_MAP, load_pretrained_block
from petals.constants import PUBLIC_INITIAL_PEERS
from petals.data_structures import CHAIN_DELIMITER, UID_DELIMITER, ServerState
from petals.dht_utils import declare_active_modules, get_remote_module_infos
from petals.server import block_selection
from petals.server.backend import TransformerBackend, merge_inference_pools_inplace
from petals.server.block_utils import get_block_size, resolve_block_dtype
from petals.server.from_pretrained import DTYPE_MAP, load_pretrained_block
from petals.server.handler import TransformerConnectionHandler
from petals.server.memory_cache import MemoryCache
from petals.server.reachability import ReachabilityProtocol, check_direct_reachability, validate_reachability
from petals.server.throughput import get_dtype_name, get_server_throughput
from petals.utils.auto_config import AutoDistributedConfig
from petals.utils.convert_block import check_device_balance, convert_block
from petals.utils.disk_cache import DEFAULT_CACHE_DIR
from petals.utils.version import get_compatible_model_repo
logger = get_logger(__name__)
@ -53,7 +55,7 @@ class Server:
max_batch_size: int = 2048,
inference_max_length: int = 2048,
torch_dtype: str = "auto",
revision: str = "main",
revision: Optional[str] = None,
cache_dir: Optional[str] = None,
max_disk_space: Optional[int] = None,
attn_cache_tokens: int = 8192,
@ -83,25 +85,32 @@ class Server:
):
"""Create a server with one or more bloom blocks. See run_server.py for documentation."""
converted_model_name_or_path = get_compatible_model_repo(converted_model_name_or_path)
self.converted_model_name_or_path = converted_model_name_or_path
self.num_handlers = num_handlers
self.min_batch_size, self.max_batch_size = min_batch_size, max_batch_size
self.inference_max_length = inference_max_length
self.compression = compression
self.stats_report_interval, self.update_period = stats_report_interval, update_period
self.prefetch_batches, self.sender_threads = prefetch_batches, sender_threads
self.use_auth_token = use_auth_token
self.revision, self.use_auth_token = revision, use_auth_token
if custom_module_path is not None:
add_custom_models_from_file(custom_module_path)
self.block_config = AutoDistributedConfig.from_pretrained(
converted_model_name_or_path,
use_auth_token=use_auth_token,
revision=revision,
)
if prefix is None:
prefix = converted_model_name_or_path
assert UID_DELIMITER not in prefix and CHAIN_DELIMITER not in prefix, (
f"Cannot use model name as prefix (contains '{UID_DELIMITER}' or '{CHAIN_DELIMITER}'); "
f"Please specify --prefix manually when starting a server"
)
logger.debug(f"Automatic dht prefix: {prefix}")
prefix = self.block_config.dht_prefix
assert UID_DELIMITER not in prefix and CHAIN_DELIMITER not in prefix, (
f"DHT prefix should not contain '{UID_DELIMITER}' or '{CHAIN_DELIMITER}'. "
f"Please specify another --prefix manually when starting a server"
)
self.prefix = prefix
if expiration is None:
@ -111,12 +120,9 @@ class Server:
self.request_timeout = request_timeout
self.session_timeout, self.step_timeout = session_timeout, step_timeout
self.block_config = BloomConfig.from_pretrained(
converted_model_name_or_path,
use_auth_token=use_auth_token,
revision=revision,
)
self.module_uids = [f"{self.prefix}.{block_index}" for block_index in range(self.block_config.n_layer)]
self.module_uids = [
f"{self.prefix}.{block_index}" for block_index in range(self.block_config.num_hidden_layers)
]
if dht_client_mode is None:
is_reachable = check_direct_reachability(initial_peers=initial_peers, use_relay=False, **kwargs)
@ -125,7 +131,7 @@ class Server:
self.dht = DHT(
initial_peers=initial_peers,
start=True,
num_workers=self.block_config.n_layer,
num_workers=self.block_config.num_hidden_layers,
use_relay=use_relay,
use_auto_relay=use_auto_relay,
client_mode=dht_client_mode,
@ -161,10 +167,10 @@ class Server:
if load_in_8bit is None:
load_in_8bit = device.type == "cuda"
self.load_in_8bit = load_in_8bit
logger.info(f"Model weights will be loaded in {get_dtype_name(torch_dtype, load_in_8bit)} format")
logger.info(f"Model weights are loaded in {get_dtype_name(torch_dtype, load_in_8bit)} format")
max_values_in_cache = 2 * self.block_config.hidden_size * attn_cache_tokens
self._cache_bytes_per_block = max_values_in_cache * torch.finfo(self.torch_dtype).bits // 8
cache_values_per_block = 2 * self.block_config.hidden_size * attn_cache_tokens
self._cache_bytes_per_block = cache_values_per_block * torch.finfo(self.torch_dtype).bits // 8
assert num_blocks is None or block_indices is None, "Please specify num_blocks or block_indices, not both"
if num_blocks is None and block_indices is None:
@ -192,6 +198,7 @@ class Server:
assert isinstance(throughput, float) or throughput in ["auto", "eval"]
if throughput in ["auto", "eval"]:
throughput = get_server_throughput(
converted_model_name_or_path,
self.block_config,
device,
torch_dtype,
@ -239,11 +246,12 @@ class Server:
num_blocks = math.floor((total_memory - autograd_memory) / (block_size + self._cache_bytes_per_block))
assert num_blocks >= 1, "Your GPU does not have enough memory to serve at least one block"
num_blocks = min(num_blocks, self.block_config.num_hidden_layers)
logger.info(
f"Server will fill all your GPU memory with {num_blocks} transformer blocks. "
f"If you want to leave some free GPU memory, please specify a lesser --num_blocks manually"
)
return min(num_blocks, self.block_config.n_layer)
return num_blocks
def run(self):
while True:
@ -274,6 +282,7 @@ class Server:
step_timeout=self.step_timeout,
prefetch_batches=self.prefetch_batches,
sender_threads=self.sender_threads,
revision=self.revision,
use_auth_token=self.use_auth_token,
load_in_8bit=self.load_in_8bit,
tensor_parallel_devices=self.tensor_parallel_devices,
@ -352,7 +361,7 @@ class ModuleContainer(threading.Thread):
dht: DHT,
prefix: str,
converted_model_name_or_path: str,
block_config: BloomConfig,
block_config: PretrainedConfig,
attn_cache_bytes: int,
alloc_timeout: float,
throughput: float,
@ -366,6 +375,7 @@ class ModuleContainer(threading.Thread):
compression: CompressionType,
update_period: float,
expiration: Optional[float],
revision: Optional[str],
use_auth_token: Optional[str],
load_in_8bit: bool,
tensor_parallel_devices: Sequence[torch.device],
@ -394,14 +404,14 @@ class ModuleContainer(threading.Thread):
block = load_pretrained_block(
converted_model_name_or_path,
block_index,
block_config,
config=block_config,
torch_dtype=torch_dtype,
revision=revision,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
max_disk_space=max_disk_space,
)
block = convert_block(block, block_config, tensor_parallel_devices, device, load_in_8bit, freeze=True)
blocks[module_uid] = TransformerBackend(
module_uid,
block,
@ -564,13 +574,9 @@ class ModuleContainer(threading.Thread):
self.ready.clear()
logger.debug("Shutting down connection handlers")
for handler in self.conn_handlers:
handler.shutdown()
logger.debug("Connection handlers terminated")
if self.checkpoint_saver is not None:
self.checkpoint_saver.stop.set()
self.checkpoint_saver.join()
logger.debug(f"Shutting down pools")
for pool in self.runtime.pools:

@ -5,15 +5,13 @@ import multiprocessing as mp
import os
import time
from collections import Counter
from hashlib import sha256
from pathlib import Path
from typing import Dict, Optional, Sequence, Union
import torch
from hivemind.utils.logging import get_logger
from transformers import BloomConfig
from transformers import PretrainedConfig
from petals.bloom.block import WrappedBloomBlock
from petals.server.block_utils import resolve_block_dtype
from petals.utils.convert_block import convert_block
from petals.utils.disk_cache import DEFAULT_CACHE_DIR
@ -35,7 +33,8 @@ if not hasattr(speedtest, "Speedtest"):
def get_server_throughput(
config: BloomConfig,
model_name: str,
config: PretrainedConfig,
device: torch.device,
dtype: Union[str, torch.dtype],
*,
@ -59,7 +58,7 @@ def get_server_throughput(
fcntl.flock(lock_fd.fileno(), fcntl.LOCK_EX)
# The OS will release the lock when lock_fd is closed or the process is killed
cache_key = f"config_{sha256(str(config).encode()).hexdigest()[-16:]}"
cache_key = f"model_{model_name}"
cache_key += f"_device_{get_device_name(device).replace(' ', '_')}"
cache_key += f"_dtype_{get_dtype_name(dtype, load_in_8bit)}"
if len(tensor_parallel_devices) > 1:
@ -101,7 +100,7 @@ def get_server_throughput(
def measure_throughput_info(
config: BloomConfig,
config: PretrainedConfig,
device: torch.device,
dtype: torch.dtype,
*,
@ -127,7 +126,7 @@ def measure_throughput_info(
return throughput_info
def measure_network_rps(config: BloomConfig, *, timeout: float = 60) -> Optional[float]:
def measure_network_rps(config: PretrainedConfig, *, timeout: float = 60) -> Optional[float]:
pipe_recv, pipe_send = mp.Pipe(duplex=False)
process = mp.Process(target=_measure_bits_per_second, args=(pipe_send,))
process.start()
@ -160,7 +159,7 @@ def _measure_bits_per_second(pipe_send: mp.Pipe):
def measure_compute_rps(
config: BloomConfig,
config: PretrainedConfig,
device: torch.device,
dtype: torch.dtype,
*,
@ -172,7 +171,7 @@ def measure_compute_rps(
if not tensor_parallel_devices:
tensor_parallel_devices = (device,)
with torch.inference_mode():
block = WrappedBloomBlock(config).to(dtype)
block = config.block_class(config).to(dtype)
block = convert_block(block, config, tensor_parallel_devices, device, load_in_8bit=load_in_8bit, freeze=True)
cache = None
@ -203,4 +202,7 @@ def get_device_name(device: torch.device) -> str:
def get_dtype_name(dtype: torch.dtype, load_in_8bit: bool) -> str:
return "8-bit" if load_in_8bit else str(dtype)
name = str(dtype)
if load_in_8bit:
name += ", 8-bit quantized"
return name

@ -0,0 +1 @@
from petals.utils.auto_config import AutoDistributedConfig

@ -0,0 +1,23 @@
from typing import Type
from transformers import AutoConfig, PretrainedConfig
CONFIG_MAPPING = {} # Populated with AutoDistributedConfig.register()
class AutoDistributedConfig:
@classmethod
def from_pretrained(cls, *args, **kwargs) -> PretrainedConfig:
config = AutoConfig.from_pretrained(*args, **kwargs)
if config.model_type not in CONFIG_MAPPING:
raise ValueError(f"Petals does not support model type {config.model_type}")
dist_config_class = CONFIG_MAPPING[config.model_type]
return dist_config_class.from_pretrained(*args, **kwargs)
@staticmethod
def register(config_class: Type[PretrainedConfig]) -> None:
assert issubclass(config_class, PretrainedConfig)
assert config_class.model_type not in CONFIG_MAPPING
CONFIG_MAPPING[config_class.model_type] = config_class

@ -10,18 +10,15 @@ import torch
import torch.nn as nn
from hivemind.utils.logging import get_logger, use_hivemind_log_handler
from tensor_parallel.slicing_configs import get_bloom_config
from transformers import BloomConfig
from transformers.models.bloom.modeling_bloom import BloomAttention
from petals.bloom.block import WrappedBloomBlock
from transformers import PretrainedConfig
use_hivemind_log_handler("in_root_logger")
logger = get_logger(__name__)
def convert_block(
block: WrappedBloomBlock,
config: BloomConfig,
block: nn.Module,
config: PretrainedConfig,
tensor_parallel_devices: Sequence[torch.device],
output_device: torch.device,
load_in_8bit: bool,
@ -58,7 +55,7 @@ def convert_block(
return block
def replace_8bit_linear(model: nn.Module, threshold=6.0):
def replace_8bit_linear(model: nn.Module, threshold=6.0) -> nn.Module:
"""
A helper function to convert all `torch.nn.Linear` modules to `bnb.nn.Linear8bit` modules from the `bitsandbytes`
library. This will enable running your models using mixed int8 precision as described by the paper `GPT3.int8():
@ -100,17 +97,22 @@ def replace_8bit_linear(model: nn.Module, threshold=6.0):
def make_tensor_parallel(
block: WrappedBloomBlock, model_config: BloomConfig, devices: Sequence[torch.device], output_device: torch.device
):
tp_config = get_bloom_config(model_config, devices)
del tp_config.state_rules[re.compile(".*word_embeddings.weight$")]
block: nn.Module, model_config: PretrainedConfig, devices: Sequence[torch.device], output_device: torch.device
) -> nn.Module:
if model_config.model_type == "bloom":
tp_config = get_bloom_config(model_config, devices)
del tp_config.state_rules[re.compile(".*word_embeddings.weight$")]
else:
if len(devices) > 1:
logger.warning("Tensor parallelism is not tested for models other than BLOOM yet, proceed with caution")
tp_config = None
tp_block = tp.TensorParallel(block, devices, config=tp_config, output_device=output_device, delay_init=True)
total_heads = 0
for tp_shard in tp_block.module_shards:
for submodule in tp_shard.modules():
if isinstance(submodule, BloomAttention):
if isinstance(submodule, model_config.attn_class):
total_heads += submodule.num_heads
assert total_heads == model_config.n_head
assert total_heads == model_config.num_attention_heads
return tp_block

@ -57,13 +57,16 @@ def free_disk_space_for(
available_space = shutil.disk_usage(cache_dir).free - os_quota
if max_disk_space is not None:
available_space = min(available_space, max_disk_space - occupied_space)
gib = 1024**3
logger.debug(f"Disk space: required {size / gib:.1f} GiB, available {available_space / gib:.1f} GiB")
if size <= available_space:
return
revisions = [revision for repo in model_repos for revision in repo.revisions]
revisions.sort(key=lambda rev: max([item.blob_last_accessed for item in rev.files], default=rev.last_modified))
# Remove as few least recently used blocks as possible
# Remove as few least recently used shards as possible
pending_removal = []
freed_space = 0
extra_space_needed = size - available_space
@ -73,9 +76,8 @@ def free_disk_space_for(
if freed_space >= extra_space_needed:
break
gib = 1024**3
if pending_removal:
logger.info(f"Removing {len(pending_removal)} blocks to free {freed_space / gib:.1f} GiB of disk space")
logger.info(f"Removing {len(pending_removal)} shards to free {freed_space / gib:.1f} GiB of disk space")
delete_strategy = cache_info.delete_revisions(*pending_removal)
delete_strategy.execute()

@ -1,3 +1,7 @@
import os
import re
from typing import Union
import requests
from hivemind.utils.logging import TextStyle, get_logger
from packaging.version import parse
@ -7,7 +11,7 @@ import petals
logger = get_logger(__name__)
def validate_version():
def validate_version() -> None:
logger.info(f"Running {TextStyle.BOLD}Petals {petals.__version__}{TextStyle.RESET}")
try:
r = requests.get("https://pypi.python.org/pypi/petals/json")
@ -24,3 +28,17 @@ def validate_version():
)
except Exception as e:
logger.warning("Failed to fetch the latest Petals version from PyPI:", exc_info=True)
def get_compatible_model_repo(model_name_or_path: Union[str, os.PathLike, None]) -> Union[str, os.PathLike, None]:
if model_name_or_path is None:
return None
match = re.fullmatch(r"(bigscience/.+)-petals", str(model_name_or_path))
if match is None:
return model_name_or_path
logger.info(
f"Loading model from {match.group(1)}, since Petals 1.2.0+ uses original repos instead of converted ones"
)
return match.group(1)

@ -1,7 +1,7 @@
import pytest
import torch
from petals.client import DistributedBloomConfig
from petals import AutoDistributedConfig
from petals.server.throughput import measure_compute_rps
from test_utils import MODEL_NAME
@ -9,7 +9,7 @@ from test_utils import MODEL_NAME
@pytest.mark.forked
@pytest.mark.parametrize("tensor_parallel", [False, True])
def test_compute_throughput(tensor_parallel: bool):
config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
config = AutoDistributedConfig.from_pretrained(MODEL_NAME)
tensor_parallel_devices = ("cpu", "cpu") if tensor_parallel else ()
compute_rps = measure_compute_rps(
config,

@ -1,13 +1,10 @@
import random
from typing import Union
import pytest
import torch
from transformers.models.bloom.configuration_bloom import BloomConfig
from petals.bloom.block import WrappedBloomBlock
from petals.bloom.from_pretrained import DTYPE_MAP, _load_state_dict, load_pretrained_block
from petals.client import DistributedBloomConfig, RemoteSequential
from petals import DistributedBloomConfig, RemoteSequential
from petals.server.from_pretrained import load_pretrained_block
from test_utils import *
@ -16,21 +13,22 @@ def test_remote_block_exact_match(atol_forward=1e-4, atol_inference=1e-3):
config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS)
remote_sequential = RemoteSequential(config)
for block_index in random.sample(range(config.n_layer), 3):
for block_index in random.sample(range(config.num_hidden_layers), 3):
remote_block = remote_sequential[block_index]
inputs = torch.randn(1, 8, config.hidden_size)
outputs_forward = remote_block(inputs)
outputs_inference = []
with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
for i in range(inputs.shape[1]):
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
# test that max length is respected
with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info:
sess.step(inputs[:, -1:, :])
assert "Maximum length exceeded" in repr(exc_info.value)
with torch.inference_mode():
with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
for i in range(inputs.shape[1]):
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
# test that max length is respected
with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info:
sess.step(inputs[:, -1:, :])
assert "Maximum length exceeded" in repr(exc_info.value)
outputs_inference = torch.cat(outputs_inference, dim=1)
ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
@ -38,47 +36,3 @@ def test_remote_block_exact_match(atol_forward=1e-4, atol_inference=1e-3):
assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)
def _old_load_pretrained_block(
converted_model_name_or_path: str,
block_index: int,
torch_dtype: Union[torch.dtype, str] = "auto",
) -> WrappedBloomBlock:
"""Load the BLOOM block by directly initializing the weights.
This test is used to check consistency with the previous implementation and can be removed in the future."""
config = BloomConfig.from_pretrained(converted_model_name_or_path)
block = WrappedBloomBlock(config)
state_dict = _load_state_dict(
converted_model_name_or_path,
block_index,
config,
cache_dir=None,
)
if torch_dtype == "auto":
with torch.no_grad():
for name, param in block.named_parameters():
assert name in state_dict, f"{name} not in state dict"
param.data = param.data.to(state_dict[name].dtype)
else:
assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
block = block.to(dtype=torch_dtype)
block.load_state_dict(state_dict, strict=True)
return block
@pytest.mark.forked
def test_init_pretrained_block(torch_dtype=torch.float32, atol_forward=1e-8):
config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
torch.random.manual_seed(0)
inputs = torch.randn(1, 16, config.hidden_size, dtype=torch_dtype)
block = load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch_dtype)
ref_block = _old_load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch_dtype)
outputs = block.forward(inputs)[0]
outputs_ref = ref_block.forward(inputs)[0]
assert torch.allclose(outputs, outputs_ref, rtol=0, atol=atol_forward)

@ -7,9 +7,9 @@
import pytest
import torch
from petals.bloom.from_pretrained import load_pretrained_block
from petals.client import DistributedBloomConfig
from petals import DistributedBloomConfig
from petals.client.remote_sequential import RemoteSequential
from petals.server.from_pretrained import load_pretrained_block
from test_utils import *

@ -1,17 +1,16 @@
import pytest
import torch
from petals.bloom.from_pretrained import load_pretrained_block
from petals.client import DistributedBloomConfig
from petals.server.block_utils import resolve_block_dtype
from petals.server.from_pretrained import load_pretrained_block
from petals.utils.auto_config import AutoDistributedConfig
from test_utils import MODEL_NAME
@pytest.mark.forked
@pytest.mark.parametrize("torch_dtype", [torch.float32, torch.float16, "auto"])
def test_backend_dtype(torch_dtype):
config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
block = load_pretrained_block(MODEL_NAME, 0, config, torch_dtype=torch_dtype)
backend_dtype = resolve_block_dtype(config, torch_dtype)
other_backend_dtype = next(block.parameters()).dtype if torch_dtype == "auto" else torch_dtype
assert backend_dtype == other_backend_dtype
def test_block_dtype(torch_dtype):
config = AutoDistributedConfig.from_pretrained(MODEL_NAME)
block = load_pretrained_block(MODEL_NAME, 0, config=config, torch_dtype=torch_dtype)
expected_dtype = resolve_block_dtype(config, torch_dtype)
assert all(param.dtype == expected_dtype for param in block.parameters())

@ -5,7 +5,7 @@ from hivemind import get_logger
from transformers.generation import BeamSearchScorer
from transformers.models.bloom import BloomForCausalLM
from petals.client.remote_model import DistributedBloomForCausalLM
from petals import DistributedBloomForCausalLM
from test_utils import *
logger = get_logger(__name__)
@ -20,7 +20,7 @@ def test_full_model_exact_match(pass_empty_tensors: bool, atol_forward=1e-3, ato
)
config = model.config
assert isinstance(model, DistributedBloomForCausalLM)
assert len(model.transformer.h) == model.config.n_layer
assert len(model.transformer.h) == model.config.num_hidden_layers
test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]

@ -4,10 +4,10 @@ import torch.nn.functional as F
from hivemind import DHT, BatchTensorDescriptor, get_logger
from hivemind.proto import runtime_pb2
from petals.bloom.from_pretrained import load_pretrained_block
from petals import DistributedBloomConfig
from petals.client import RemoteSequenceManager, RemoteSequential
from petals.client.remote_model import DistributedBloomConfig
from petals.data_structures import UID_DELIMITER
from petals.server.from_pretrained import load_pretrained_block
from test_utils import *
logger = get_logger(__name__)
@ -28,10 +28,10 @@ def test_remote_sequential():
full_grad = test_inputs.grad.clone()
test_inputs.grad.data.zero_()
first_half = sequential[: config.n_layer // 2]
second_half = sequential[config.n_layer // 2 :]
first_half = sequential[: config.num_hidden_layers // 2]
second_half = sequential[config.num_hidden_layers // 2 :]
assert len(first_half) + len(second_half) == len(sequential)
assert abs(len(first_half) - len(second_half)) == config.n_layer % 2
assert abs(len(first_half) - len(second_half)) == config.num_hidden_layers % 2
for m in sequential, first_half, second_half:
assert isinstance(repr(m), str)
@ -46,7 +46,7 @@ def test_remote_sequential():
assert torch.allclose(test_inputs.grad, full_grad, atol=1e-3)
# test RemoteSequential with lossy compression
block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer)]
block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(config.num_hidden_layers)]
lossy_sequential = RemoteSequential(
config, sequence_manager=DummyCustomSequenceManager(config, block_uids, dht=dht)
)
@ -90,7 +90,9 @@ def test_remote_sequential_prompts(batch_size=2, seq_len=5, pre_seq_len=3):
inputs = F.normalize(torch.randn(batch_size, seq_len, config.hidden_size), dim=-1)
output_proj = F.normalize(torch.randn(batch_size, seq_len + pre_seq_len, config.hidden_size), dim=-1)
input_prompts = F.normalize(torch.randn(batch_size, pre_seq_len, config.hidden_size, requires_grad=True), dim=-1)
intermediate_prompts = torch.randn(config.n_layer, batch_size, pre_seq_len, config.hidden_size, requires_grad=True)
intermediate_prompts = torch.randn(
config.num_hidden_layers, batch_size, pre_seq_len, config.hidden_size, requires_grad=True
)
input_prompts = input_prompts.detach().requires_grad_(True)
intermediate_prompts = intermediate_prompts.detach().requires_grad_(True)
@ -110,7 +112,7 @@ def test_remote_sequential_prompts(batch_size=2, seq_len=5, pre_seq_len=3):
assert intermediate_prompts_ref.grad is None
outputs_ref = torch.cat([inputs, input_prompts_ref], dim=1)
for block_index in range(config.n_layer):
for block_index in range(config.num_hidden_layers):
block_prompt = intermediate_prompts_ref[block_index]
outputs_ref[:, : block_prompt.shape[1]] += block_prompt

@ -5,8 +5,8 @@ import pytest
import torch
from hivemind import DHT, get_logger
from petals import DistributedBloomConfig
from petals.client import RemoteSequenceManager, RemoteSequential
from petals.client.remote_model import DistributedBloomConfig
from petals.data_structures import UID_DELIMITER
from test_utils import *
@ -22,7 +22,7 @@ def test_sequence_manager_basics(mode: str):
shutdown_evt = threading.Event()
# test RemoteSequential with lossy compression
block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer)]
block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(config.num_hidden_layers)]
sequential = RemoteSequential(
config,
sequence_manager=TestSequenceManager(config, block_uids, dht=dht, _was_shut_down=shutdown_evt),

@ -4,7 +4,7 @@ import hivemind
import pytest
import torch
from petals.client import DistributedBloomConfig, RemoteSequential
from petals import DistributedBloomConfig, RemoteSequential
from petals.server.handler import CACHE_TOKENS_AVAILABLE
from test_utils import *

@ -6,7 +6,7 @@ import transformers
from tensor_parallel import TensorParallel
from tensor_parallel.slicing_configs import get_bloom_config
from petals.bloom.from_pretrained import load_pretrained_block
from petals.server.from_pretrained import load_pretrained_block
from test_utils import MODEL_NAME

Loading…
Cancel
Save