learn-wgpu/code/beginner/tutorial7-instancing/src/challenge.rs

708 lines
25 KiB
Rust
Raw Normal View History

use std::iter;
2020-09-05 22:45:52 +00:00
use cgmath::prelude::*;
2020-09-28 05:24:43 +00:00
use wgpu::util::DeviceExt;
2019-12-31 00:04:38 +00:00
use winit::{
event::*,
2020-09-28 05:24:43 +00:00
event_loop::{ControlFlow, EventLoop},
2019-12-31 00:04:38 +00:00
window::{Window, WindowBuilder},
};
2020-02-24 23:23:23 +00:00
mod texture;
2019-12-31 00:04:38 +00:00
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
2019-12-31 00:04:38 +00:00
struct Vertex {
position: [f32; 3],
tex_coords: [f32; 2],
}
impl Vertex {
fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a> {
use std::mem;
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<Vertex>() as wgpu::BufferAddress,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &[
wgpu::VertexAttributeDescriptor {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float3,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float2,
},
2020-09-28 05:24:43 +00:00
],
2019-12-31 00:04:38 +00:00
}
}
}
const VERTICES: &[Vertex] = &[
2020-09-28 05:24:43 +00:00
Vertex {
position: [-0.0868241, -0.49240386, 0.0],
tex_coords: [1.0 - 0.4131759, 1.0 - 0.00759614],
}, // A
Vertex {
position: [-0.49513406, -0.06958647, 0.0],
tex_coords: [1.0 - 0.0048659444, 1.0 - 0.43041354],
}, // B
Vertex {
position: [-0.21918549, 0.44939706, 0.0],
tex_coords: [1.0 - 0.28081453, 1.0 - 0.949397057],
}, // C
Vertex {
position: [0.35966998, 0.3473291, 0.0],
tex_coords: [1.0 - 0.85967, 1.0 - 0.84732911],
}, // D
Vertex {
position: [0.44147372, -0.2347359, 0.0],
tex_coords: [1.0 - 0.9414737, 1.0 - 0.2652641],
}, // E
2019-12-31 00:04:38 +00:00
];
2020-09-28 05:24:43 +00:00
const INDICES: &[u16] = &[0, 1, 4, 1, 2, 4, 2, 3, 4];
2019-12-31 00:04:38 +00:00
2020-08-03 10:44:46 +00:00
#[rustfmt::skip]
2019-12-31 00:04:38 +00:00
pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4<f32> = cgmath::Matrix4::new(
1.0, 0.0, 0.0, 0.0,
2020-04-24 03:17:41 +00:00
0.0, 1.0, 0.0, 0.0,
2019-12-31 00:04:38 +00:00
0.0, 0.0, 0.5, 0.0,
0.0, 0.0, 0.5, 1.0,
);
2020-01-09 20:08:01 +00:00
const NUM_INSTANCES_PER_ROW: u32 = 10;
2020-09-28 05:24:43 +00:00
const INSTANCE_DISPLACEMENT: cgmath::Vector3<f32> = cgmath::Vector3::new(
NUM_INSTANCES_PER_ROW as f32 * 0.5,
0.0,
NUM_INSTANCES_PER_ROW as f32 * 0.5,
);
2020-01-09 20:08:01 +00:00
2019-12-31 00:04:38 +00:00
struct Camera {
eye: cgmath::Point3<f32>,
target: cgmath::Point3<f32>,
up: cgmath::Vector3<f32>,
aspect: f32,
fovy: f32,
znear: f32,
zfar: f32,
}
impl Camera {
fn build_view_projection_matrix(&self) -> cgmath::Matrix4<f32> {
let view = cgmath::Matrix4::look_at(self.eye, self.target, self.up);
let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar);
2020-08-03 10:44:46 +00:00
proj * view
2019-12-31 00:04:38 +00:00
}
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
2019-12-31 00:04:38 +00:00
struct Uniforms {
view_proj: [[f32; 4]; 4],
2019-12-31 00:04:38 +00:00
}
impl Uniforms {
fn new() -> Self {
Self {
view_proj: cgmath::Matrix4::identity().into(),
2019-12-31 00:04:38 +00:00
}
}
2020-01-09 20:08:01 +00:00
fn update_view_proj(&mut self, camera: &Camera) {
self.view_proj = (OPENGL_TO_WGPU_MATRIX * camera.build_view_projection_matrix()).into();
2020-01-09 20:08:01 +00:00
}
2019-12-31 00:04:38 +00:00
}
struct CameraController {
speed: f32,
is_up_pressed: bool,
is_down_pressed: bool,
is_forward_pressed: bool,
is_backward_pressed: bool,
is_left_pressed: bool,
is_right_pressed: bool,
}
impl CameraController {
fn new(speed: f32) -> Self {
Self {
speed,
is_up_pressed: false,
is_down_pressed: false,
is_forward_pressed: false,
is_backward_pressed: false,
is_left_pressed: false,
is_right_pressed: false,
}
}
fn process_events(&mut self, event: &WindowEvent) -> bool {
match event {
WindowEvent::KeyboardInput {
2020-09-28 05:24:43 +00:00
input:
KeyboardInput {
state,
virtual_keycode: Some(keycode),
..
},
2019-12-31 00:04:38 +00:00
..
} => {
let is_pressed = *state == ElementState::Pressed;
match keycode {
VirtualKeyCode::Space => {
self.is_up_pressed = is_pressed;
true
}
VirtualKeyCode::LShift => {
self.is_down_pressed = is_pressed;
true
}
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.is_forward_pressed = is_pressed;
true
}
VirtualKeyCode::A | VirtualKeyCode::Left => {
self.is_left_pressed = is_pressed;
true
}
VirtualKeyCode::S | VirtualKeyCode::Down => {
self.is_backward_pressed = is_pressed;
true
}
VirtualKeyCode::D | VirtualKeyCode::Right => {
self.is_right_pressed = is_pressed;
true
}
_ => false,
}
}
_ => false,
}
}
fn update_camera(&self, camera: &mut Camera) {
2020-07-02 00:17:31 +00:00
let forward = camera.target - camera.eye;
let forward_norm = forward.normalize();
let forward_mag = forward.magnitude();
// Prevents glitching when camera gets too close to the
// center of the scene.
if self.is_forward_pressed && forward_mag > self.speed {
camera.eye += forward_norm * self.speed;
2019-12-31 00:04:38 +00:00
}
if self.is_backward_pressed {
2020-07-02 00:17:31 +00:00
camera.eye -= forward_norm * self.speed;
2019-12-31 00:04:38 +00:00
}
2020-07-02 00:17:31 +00:00
let right = forward_norm.cross(camera.up);
// Redo radius calc in case the up/ down is pressed.
let forward = camera.target - camera.eye;
let forward_mag = forward.magnitude();
2019-12-31 00:04:38 +00:00
if self.is_right_pressed {
2020-09-28 05:24:43 +00:00
// Rescale the distance between the target and eye so
// that it doesn't change. The eye therefore still
2020-07-02 00:17:31 +00:00
// lies on the circle made by the target and eye.
camera.eye = camera.target - (forward + right * self.speed).normalize() * forward_mag;
2019-12-31 00:04:38 +00:00
}
if self.is_left_pressed {
2020-07-02 00:17:31 +00:00
camera.eye = camera.target - (forward - right * self.speed).normalize() * forward_mag;
2019-12-31 00:04:38 +00:00
}
}
}
2020-01-09 20:08:01 +00:00
const ROTATION_SPEED: f32 = 2.0 * std::f32::consts::PI / 60.0;
struct Instance {
position: cgmath::Vector3<f32>,
rotation: cgmath::Quaternion<f32>,
}
impl Instance {
2020-09-05 22:45:52 +00:00
fn to_raw(&self) -> InstanceRaw {
2020-09-28 05:24:43 +00:00
let transform =
cgmath::Matrix4::from_translation(self.position) * cgmath::Matrix4::from(self.rotation);
2020-11-18 18:48:37 +00:00
InstanceRaw {
transform: transform.into(),
}
2020-01-09 20:08:01 +00:00
}
}
2020-04-24 03:17:41 +00:00
#[repr(C)]
2020-11-18 17:48:28 +00:00
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
2020-04-24 03:17:41 +00:00
struct InstanceRaw {
2020-11-18 17:48:28 +00:00
transform: [[f32; 4]; 4],
2020-04-24 03:17:41 +00:00
}
2020-11-18 17:48:28 +00:00
impl InstanceRaw {
fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a> {
use std::mem;
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<InstanceRaw>() as wgpu::BufferAddress,
// We need to switch from using a step mode of Vertex to Instance
// This means that our shaders will only change to use the next
// instance when the shader starts processing a new instance
step_mode: wgpu::InputStepMode::Instance,
attributes: &[
wgpu::VertexAttributeDescriptor {
offset: 0,
// While our vertex shader only uses locations 0, and 1 now, in later tutorials we'll
// be using 2, 3, and 4, for Vertex. We'll start at slot 5 not conflict with them later
shader_location: 5,
format: wgpu::VertexFormat::Float4,
},
// A mat4 takes up 4 vertex slots as it is technically 4 vec4s. We need to define a slot
// for each vec4. We don't have to do this in code though.
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 4]>() as wgpu::BufferAddress,
shader_location: 6,
format: wgpu::VertexFormat::Float4,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress,
shader_location: 7,
format: wgpu::VertexFormat::Float4,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 12]>() as wgpu::BufferAddress,
shader_location: 8,
format: wgpu::VertexFormat::Float4,
},
],
}
}
}
2020-04-24 03:17:41 +00:00
2019-12-31 00:04:38 +00:00
struct State {
surface: wgpu::Surface,
device: wgpu::Device,
queue: wgpu::Queue,
sc_desc: wgpu::SwapChainDescriptor,
swap_chain: wgpu::SwapChain,
render_pipeline: wgpu::RenderPipeline,
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
2020-09-05 22:45:52 +00:00
#[allow(dead_code)]
2020-02-24 23:23:23 +00:00
diffuse_texture: texture::Texture,
2019-12-31 00:04:38 +00:00
diffuse_bind_group: wgpu::BindGroup,
2020-01-09 20:08:01 +00:00
camera: Camera,
2019-12-31 00:04:38 +00:00
camera_controller: CameraController,
uniforms: Uniforms,
uniform_buffer: wgpu::Buffer,
uniform_bind_group: wgpu::BindGroup,
2020-01-11 22:55:08 +00:00
size: winit::dpi::PhysicalSize<u32>,
2020-01-09 20:08:01 +00:00
instances: Vec<Instance>,
instance_buffer: wgpu::Buffer,
}
fn quat_mul(q: cgmath::Quaternion<f32>, r: cgmath::Quaternion<f32>) -> cgmath::Quaternion<f32> {
2020-09-28 05:24:43 +00:00
// This block uses quaternions of the form of
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
// q=q0+iq1+jq2+kq3
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
// and
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
// r=r0+ir1+jr2+kr3.
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
// The quaternion product has the form of
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
// t=q×r=t0+it1+jt2+kt3,
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
// where
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
// t0=(r0 q0 r1 q1 r2 q2 r3 q3)
// t1=(r0 q1 + r1 q0 r2 q3 + r3 q2)
// t2=(r0 q2 + r1 q3 + r2 q0 r3 q1)
// t3=(r0 q3 r1 q2 + r2 q1 + r3 q0
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
let w = r.s * q.s - r.v.x * q.v.x - r.v.y * q.v.y - r.v.z * q.v.z;
let xi = r.s * q.v.x + r.v.x * q.s - r.v.y * q.v.z + r.v.z * q.v.y;
let yj = r.s * q.v.y + r.v.x * q.v.z + r.v.y * q.s - r.v.z * q.v.x;
let zk = r.s * q.v.z - r.v.x * q.v.y + r.v.y * q.v.x + r.v.z * q.s;
2020-01-16 21:13:50 +00:00
2020-09-28 05:24:43 +00:00
cgmath::Quaternion::new(w, xi, yj, zk)
2019-12-31 00:04:38 +00:00
}
impl State {
2020-04-24 03:17:41 +00:00
async fn new(window: &Window) -> Self {
2019-12-31 00:04:38 +00:00
let size = window.inner_size();
2020-09-05 22:45:52 +00:00
// The instance is a handle to our GPU
// BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU
let instance = wgpu::Instance::new(wgpu::BackendBit::PRIMARY);
let surface = unsafe { instance.create_surface(window) };
2020-09-28 05:24:43 +00:00
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
2021-02-07 19:17:22 +00:00
power_preference: wgpu::PowerPreference::default(),
2020-04-24 03:17:41 +00:00
compatible_surface: Some(&surface),
2020-09-28 05:24:43 +00:00
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
2021-02-07 19:17:22 +00:00
label: None,
2020-09-28 05:24:43 +00:00
features: wgpu::Features::empty(),
limits: wgpu::Limits::default(),
},
None, // Trace path
)
.await
.unwrap();
2019-12-31 00:04:38 +00:00
let sc_desc = wgpu::SwapChainDescriptor {
2021-02-07 19:17:22 +00:00
usage: wgpu::TextureUsage::RENDER_ATTACHMENT,
2019-12-31 00:04:38 +00:00
format: wgpu::TextureFormat::Bgra8UnormSrgb,
2020-01-11 22:55:08 +00:00
width: size.width,
height: size.height,
2020-04-24 03:17:41 +00:00
present_mode: wgpu::PresentMode::Fifo,
2019-12-31 00:04:38 +00:00
};
let swap_chain = device.create_swap_chain(&surface, &sc_desc);
let diffuse_bytes = include_bytes!("happy-tree.png");
2020-09-28 05:24:43 +00:00
let diffuse_texture =
texture::Texture::from_bytes(&device, &queue, diffuse_bytes, "happy-tree.png").unwrap();
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
2020-09-05 22:45:52 +00:00
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
multisampled: false,
dimension: wgpu::TextureViewDimension::D2,
component_type: wgpu::TextureComponentType::Uint,
},
count: None,
2019-12-31 00:04:38 +00:00
},
2020-09-05 22:45:52 +00:00
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
2020-09-28 05:24:43 +00:00
ty: wgpu::BindingType::Sampler { comparison: false },
2020-09-05 22:45:52 +00:00
count: None,
2020-04-24 03:17:41 +00:00
},
2020-09-05 22:45:52 +00:00
],
label: Some("texture_bind_group_layout"),
2020-09-28 05:24:43 +00:00
});
2019-12-31 00:04:38 +00:00
2020-09-28 05:24:43 +00:00
let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
],
label: Some("diffuse_bind_group"),
});
2019-12-31 00:04:38 +00:00
let camera = Camera {
2020-01-09 20:08:01 +00:00
eye: (0.0, 5.0, -10.0).into(),
2019-12-31 00:04:38 +00:00
target: (0.0, 0.0, 0.0).into(),
up: cgmath::Vector3::unit_y(),
aspect: sc_desc.width as f32 / sc_desc.height as f32,
fovy: 45.0,
znear: 0.1,
zfar: 100.0,
};
let camera_controller = CameraController::new(0.2);
let mut uniforms = Uniforms::new();
2020-01-09 20:08:01 +00:00
uniforms.update_view_proj(&camera);
2019-12-31 00:04:38 +00:00
2020-09-28 05:24:43 +00:00
let uniform_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Uniform Buffer"),
contents: bytemuck::cast_slice(&[uniforms]),
usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
});
2020-01-16 21:13:50 +00:00
2020-09-28 05:24:43 +00:00
let instances = (0..NUM_INSTANCES_PER_ROW)
.flat_map(|z| {
(0..NUM_INSTANCES_PER_ROW).map(move |x| {
let position = cgmath::Vector3 {
x: x as f32,
y: 0.0,
z: z as f32,
} - INSTANCE_DISPLACEMENT;
let rotation = if position.is_zero() {
// this is needed so an object at (0, 0, 0) won't get scaled to zero
// as Quaternions can effect scale if they're not create correctly
cgmath::Quaternion::from_axis_angle(
cgmath::Vector3::unit_y(),
cgmath::Deg(0.0),
)
} else {
cgmath::Quaternion::from_axis_angle(
position.clone().normalize(),
cgmath::Deg(45.0),
)
};
Instance { position, rotation }
})
2020-01-09 20:08:01 +00:00
})
2020-09-28 05:24:43 +00:00
.collect::<Vec<_>>();
2020-01-09 20:08:01 +00:00
2020-09-05 22:45:52 +00:00
let instance_data = instances.iter().map(Instance::to_raw).collect::<Vec<_>>();
2020-09-28 05:24:43 +00:00
let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Instance Buffer"),
contents: bytemuck::cast_slice(&instance_data),
2020-11-18 17:48:28 +00:00
usage: wgpu::BufferUsage::VERTEX | wgpu::BufferUsage::COPY_DST,
2020-09-28 05:24:43 +00:00
});
2020-01-09 20:08:01 +00:00
2020-09-28 05:24:43 +00:00
let uniform_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
2020-11-18 18:48:37 +00:00
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX,
ty: wgpu::BindingType::UniformBuffer {
dynamic: false,
min_binding_size: None,
2019-12-31 00:04:38 +00:00
},
2020-11-18 18:48:37 +00:00
count: None,
}],
2020-09-28 05:24:43 +00:00
label: Some("uniform_bind_group_layout"),
});
2019-12-31 00:04:38 +00:00
let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &uniform_bind_group_layout,
2020-11-18 18:48:37 +00:00
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(uniform_buffer.slice(..)),
}],
2020-04-24 03:17:41 +00:00
label: Some("uniform_bind_group"),
2019-12-31 00:04:38 +00:00
});
2020-09-05 22:45:52 +00:00
let vs_module = device.create_shader_module(wgpu::include_spirv!("shader.vert.spv"));
let fs_module = device.create_shader_module(wgpu::include_spirv!("shader.frag.spv"));
2019-12-31 00:04:38 +00:00
2020-09-28 05:24:43 +00:00
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
2020-09-05 22:45:52 +00:00
label: Some("Render Pipeline Layout"),
2020-09-28 05:24:43 +00:00
bind_group_layouts: &[&texture_bind_group_layout, &uniform_bind_group_layout],
2020-09-05 22:45:52 +00:00
push_constant_ranges: &[],
2020-09-28 05:24:43 +00:00
});
2020-09-05 22:45:52 +00:00
2020-09-28 05:24:43 +00:00
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs_module,
entry_point: "main",
},
fragment_stage: Some(wgpu::ProgrammableStageDescriptor {
module: &fs_module,
entry_point: "main",
}),
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: wgpu::FrontFace::Ccw,
cull_mode: wgpu::CullMode::Back,
depth_bias: 0,
depth_bias_slope_scale: 0.0,
depth_bias_clamp: 0.0,
clamp_depth: false,
}),
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: &[wgpu::ColorStateDescriptor {
format: sc_desc.format,
color_blend: wgpu::BlendDescriptor::REPLACE,
alpha_blend: wgpu::BlendDescriptor::REPLACE,
write_mask: wgpu::ColorWrite::ALL,
}],
depth_stencil_state: None,
vertex_state: wgpu::VertexStateDescriptor {
index_format: wgpu::IndexFormat::Uint16,
2020-11-18 17:48:28 +00:00
vertex_buffers: &[Vertex::desc(), InstanceRaw::desc()],
2020-09-28 05:24:43 +00:00
},
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
});
2019-12-31 00:04:38 +00:00
2020-09-28 05:24:43 +00:00
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(VERTICES),
usage: wgpu::BufferUsage::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(INDICES),
usage: wgpu::BufferUsage::INDEX,
});
2019-12-31 00:04:38 +00:00
let num_indices = INDICES.len() as u32;
Self {
surface,
device,
queue,
sc_desc,
swap_chain,
render_pipeline,
vertex_buffer,
index_buffer,
num_indices,
diffuse_texture,
diffuse_bind_group,
2020-01-09 20:08:01 +00:00
camera,
2019-12-31 00:04:38 +00:00
camera_controller,
uniform_buffer,
uniform_bind_group,
uniforms,
size,
2020-01-09 20:08:01 +00:00
instances,
instance_buffer,
2019-12-31 00:04:38 +00:00
}
}
2020-04-26 00:36:50 +00:00
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
2019-12-31 00:04:38 +00:00
self.size = new_size;
2020-01-11 22:55:08 +00:00
self.sc_desc.width = new_size.width;
self.sc_desc.height = new_size.height;
2019-12-31 00:04:38 +00:00
self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc);
2020-01-09 20:08:01 +00:00
self.camera.aspect = self.sc_desc.width as f32 / self.sc_desc.height as f32;
2019-12-31 00:04:38 +00:00
}
fn input(&mut self, event: &WindowEvent) -> bool {
self.camera_controller.process_events(event)
}
2020-04-26 00:36:50 +00:00
fn update(&mut self) {
2020-01-09 20:08:01 +00:00
self.camera_controller.update_camera(&mut self.camera);
self.uniforms.update_view_proj(&self.camera);
2020-09-28 05:24:43 +00:00
self.queue.write_buffer(
&self.uniform_buffer,
0,
bytemuck::cast_slice(&[self.uniforms]),
);
2019-12-31 00:04:38 +00:00
2020-01-09 20:08:01 +00:00
for instance in &mut self.instances {
let amount = cgmath::Quaternion::from_angle_y(cgmath::Rad(ROTATION_SPEED));
let current = instance.rotation;
instance.rotation = quat_mul(amount, current);
}
2020-09-28 05:24:43 +00:00
let instance_data = self
.instances
.iter()
.map(Instance::to_raw)
.collect::<Vec<_>>();
self.queue.write_buffer(
&self.instance_buffer,
0,
bytemuck::cast_slice(&instance_data),
);
2019-12-31 00:04:38 +00:00
}
2020-11-10 23:52:55 +00:00
fn render(&mut self) -> Result<(), wgpu::SwapChainError> {
2020-11-11 22:41:06 +00:00
let frame = self.swap_chain.get_current_frame()?.output;
2019-12-31 00:04:38 +00:00
2020-09-28 05:24:43 +00:00
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
2019-12-31 00:04:38 +00:00
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
2021-02-07 19:17:22 +00:00
label: Some("Render Pass"),
2020-09-28 05:24:43 +00:00
color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor {
attachment: &frame.view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
}],
2019-12-31 00:04:38 +00:00
depth_stencil_attachment: None,
});
2020-11-18 17:48:28 +00:00
render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..));
2019-12-31 00:04:38 +00:00
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]);
render_pass.set_bind_group(1, &self.uniform_bind_group, &[]);
2020-09-05 22:45:52 +00:00
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..));
2020-01-09 20:08:01 +00:00
render_pass.draw_indexed(0..self.num_indices, 0, 0..self.instances.len() as u32);
2019-12-31 00:04:38 +00:00
}
self.queue.submit(iter::once(encoder.finish()));
2020-11-10 23:52:55 +00:00
Ok(())
2019-12-31 00:04:38 +00:00
}
}
fn main() {
2020-09-10 02:48:08 +00:00
env_logger::init();
2019-12-31 00:04:38 +00:00
let event_loop = EventLoop::new();
2020-09-28 05:24:43 +00:00
let window = WindowBuilder::new().build(&event_loop).unwrap();
2019-12-31 00:04:38 +00:00
2020-04-24 03:17:41 +00:00
use futures::executor::block_on;
2019-12-31 00:04:38 +00:00
2020-04-24 03:17:41 +00:00
// Since main can't be async, we're going to need to block
let mut state = block_on(State::new(&window));
2020-01-16 21:13:50 +00:00
2019-12-31 00:04:38 +00:00
event_loop.run(move |event, _, control_flow| {
match event {
Event::WindowEvent {
ref event,
window_id,
2020-09-28 05:24:43 +00:00
} if window_id == window.id() => {
if !state.input(event) {
match event {
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::KeyboardInput { input, .. } => match input {
2019-12-31 00:04:38 +00:00
KeyboardInput {
state: ElementState::Pressed,
virtual_keycode: Some(VirtualKeyCode::Escape),
..
} => *control_flow = ControlFlow::Exit,
2020-04-24 03:17:41 +00:00
_ => {}
2020-09-28 05:24:43 +00:00
},
WindowEvent::Resized(physical_size) => {
state.resize(*physical_size);
2019-12-31 00:04:38 +00:00
}
2020-09-28 05:24:43 +00:00
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
// new_inner_size is &mut so w have to dereference it twice
state.resize(**new_inner_size);
}
_ => {}
2019-12-31 00:04:38 +00:00
}
}
}
2020-04-24 03:17:41 +00:00
Event::RedrawRequested(_) => {
2020-04-26 00:36:50 +00:00
state.update();
2020-11-10 23:52:55 +00:00
match state.render() {
Ok(_) => {}
// Recreate the swap_chain if lost
Err(wgpu::SwapChainError::Lost) => state.resize(state.size),
2020-11-11 22:41:06 +00:00
// The system is out of memory, we should probably quit
2020-11-10 23:52:55 +00:00
Err(wgpu::SwapChainError::OutOfMemory) => *control_flow = ControlFlow::Exit,
// All other errors (Outdated, Timeout) should be resolved by the next frame
Err(e) => eprintln!("{:?}", e),
}
2020-04-24 03:17:41 +00:00
}
2020-01-11 22:55:08 +00:00
Event::MainEventsCleared => {
2020-04-24 03:17:41 +00:00
// RedrawRequested will only trigger once, unless we manually
// request it.
window.request_redraw();
2019-12-31 00:04:38 +00:00
}
2020-04-24 03:17:41 +00:00
_ => {}
2019-12-31 00:04:38 +00:00
}
});
2020-01-16 21:13:50 +00:00
}