**Description:** Databricks LLM does not support SerDe the
transform_input_fn and transform_output_fn. After saving and loading,
the LLM will be broken. This PR serialize these functions into a hex
string using pickle, and saving the hex string in the yaml file. Using
pickle to serialize a function can be flaky, but this is a simple
workaround that unblocks many use cases. If more sophisticated SerDe is
needed, we can improve it later.
Test:
Added a simple unit test.
I did manual test on Databricks and it works well.
The saved yaml looks like:
```
llm:
_type: databricks
cluster_driver_port: null
cluster_id: null
databricks_uri: databricks
endpoint_name: databricks-mixtral-8x7b-instruct
extra_params: {}
host: e2-dogfood.staging.cloud.databricks.com
max_tokens: null
model_kwargs: null
n: 1
stop: null
task: null
temperature: 0.0
transform_input_fn: 80049520000000000000008c085f5f6d61696e5f5f948c0f7472616e73666f726d5f696e7075749493942e
transform_output_fn: null
```
@baskaryan
```python
from langchain_community.embeddings import DatabricksEmbeddings
from langchain_community.llms import Databricks
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import mlflow
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
def transform_input(**request):
request["messages"] = [
{
"role": "user",
"content": request["prompt"]
}
]
del request["prompt"]
return request
llm = Databricks(endpoint_name="databricks-mixtral-8x7b-instruct", transform_input_fn=transform_input)
persist_dir = "faiss_databricks_embedding"
# Create the vector db, persist the db to a local fs folder
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
db.save_local(persist_dir)
def load_retriever(persist_directory):
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
vectorstore = FAISS.load_local(persist_directory, embeddings)
return vectorstore.as_retriever()
retriever = load_retriever(persist_dir)
retrievalQA = RetrievalQA.from_llm(llm=llm, retriever=retriever)
with mlflow.start_run() as run:
logged_model = mlflow.langchain.log_model(
retrievalQA,
artifact_path="retrieval_qa",
loader_fn=load_retriever,
persist_dir=persist_dir,
)
# Load the retrievalQA chain
loaded_model = mlflow.pyfunc.load_model(logged_model.model_uri)
print(loaded_model.predict([{"query": "What did the president say about Ketanji Brown Jackson"}]))
```
- **Description:**
Embedding field name was hard-coded named "embedding".
So I suggest that change `res["embedding"]` into
`res[self._embedding_key]`.
- **Issue:** #17177,
- **Twitter handle:**
[@bagcheoljun17](https://twitter.com/bagcheoljun17)
- **Description:** Fixes in the Ontotext GraphDB Graph and QA Chain
related to the error handling in case of invalid SPARQL queries, for
which `prepareQuery` doesn't throw an exception, but the server returns
400 and the query is indeed invalid
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** @OntotextGraphDB
**Description:**
Implemented unique ID validation in the FAISS component to ensure all
document IDs are distinct. This update resolves issues related to
non-unique IDs, such as inconsistent behavior during deletion processes.
**Description:** enable _parse_response_candidate to support complex
structure format.
**Issue:**
currently, if Gemini response complex args format, people will get
"TypeError: Object of type RepeatedComposite is not JSON serializable"
error from _parse_response_candidate.
response candidate example
```
content {
role: "model"
parts {
function_call {
name: "Information"
args {
fields {
key: "people"
value {
list_value {
values {
string_value: "Joe is 30, his mom is Martha"
}
}
}
}
}
}
}
}
finish_reason: STOP
safety_ratings {
category: HARM_CATEGORY_HARASSMENT
probability: NEGLIGIBLE
}
safety_ratings {
category: HARM_CATEGORY_HATE_SPEECH
probability: NEGLIGIBLE
}
safety_ratings {
category: HARM_CATEGORY_SEXUALLY_EXPLICIT
probability: NEGLIGIBLE
}
safety_ratings {
category: HARM_CATEGORY_DANGEROUS_CONTENT
probability: NEGLIGIBLE
}
```
error msg:
```
Traceback (most recent call last):
File "/home/jupyter/user/abehsu/gemini_langchain_tools/example2.py", line 36, in <module>
print(tagging_chain.invoke({"input": "Joe is 30, his mom is Martha"}))
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/runnables/base.py", line 2053, in invoke
input = step.invoke(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/runnables/base.py", line 3887, in invoke
return self.bound.invoke(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 165, in invoke
self.generate_prompt(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 543, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 407, in generate
raise e
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 397, in generate
self._generate_with_cache(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 576, in _generate_with_cache
return self._generate(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 406, in _generate
generations = [
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 408, in <listcomp>
message=_parse_response_candidate(c),
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 280, in _parse_response_candidate
function_call["arguments"] = json.dumps(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/__init__.py", line 231, in dumps
return _default_encoder.encode(obj)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 199, in encode
chunks = self.iterencode(o, _one_shot=True)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 257, in iterencode
return _iterencode(o, 0)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 179, in default
raise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type RepeatedComposite is not JSON serializable
```
**Twitter handle:** @abehsu1992626
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description: added logic to override get_num_tokens_from_messages()
for ChatVertexAI. Currently ChatVertexAI was inheriting
get_num_tokens_from_messages() from BaseChatModel which in-turn was
calling GPT-2 tokenizer
- **Issue: NA
- **Dependencies: NA
- **Twitter handle:@aditya_rane
@lkuligin for review
---------
Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
Ran
```python
import glob
import re
def update_prompt(x):
return re.sub(
r"(?P<start>\b)PromptTemplate\(template=(?P<template>.*), input_variables=(?:.*)\)",
"\g<start>PromptTemplate.from_template(\g<template>)",
x
)
for fn in glob.glob("docs/**/*", recursive=True):
try:
content = open(fn).readlines()
except:
continue
content = [update_prompt(l) for l in content]
with open(fn, "w") as f:
f.write("".join(content))
```
Replace this entire comment with:
- **Description:** Added missing link for Quickstart in Model IO
documentation,
- **Issue:** N/A,
- **Dependencies:** N/A,
- **Twitter handle:** N/A
<!--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Several notebooks have Title != file name. That results in corrupted
sorting in Navbar (ToC).
- Fixed titles and file names.
- Changed text formats to the consistent form
- Redirected renamed files in the `Vercel.json`
- **Description:**
Actually the test named `test_openai_apredict` isn't testing the
apredict method from ChatOpenAI.
- **Twitter handle:**
https://twitter.com/OAlmofadas
* This PR adds async methods to the LLM cache.
* Adds an implementation using Redis called AsyncRedisCache.
* Adds a docker compose file at the /docker to help spin up docker
* Updates redis tests to use a context manager so flushing always happens by default
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
This PR standardizes the `output_parser.py` file across all agent types
to ensure a uniform parsing mechanism is implemented. It introduces a
cohesive structure and common interface for output parsing, facilitating
easier modifications and extensions by users. The standardized approach
enhances maintainability and scalability of the codebase by providing a
consistent pattern for output parsing, which can be easily understood
and utilized across different agent types.
This PR builds upon the foundation set by a previously merged PR, which
focused exclusively on standardizing the `output_parser.py` for the
`conversational_agent` ([PR
#16945](https://github.com/langchain-ai/langchain/pull/16945)). With
this new update, I extend the standardization efforts to encompass
`output_parser.py` files across all agent types. This enhancement not
only unifies the parsing mechanism across the board but also introduces
the flexibility for users to incorporate custom `FORMAT_INSTRUCTIONS`.
- **Issue:**
https://github.com/langchain-ai/langchain/issues/10721https://github.com/langchain-ai/langchain/issues/4044
- **Dependencies:**
No new dependencies required for this change
- **Twitter handle:**
With my github user is enough. Thanks
I hope you accept my PR.
Based on my experiments, the newline isn't always there, so we can make
the regex slightly more robust by allowing an optional newline after the
bacticks
This PR is opinionated.
- Moved `Embedding models` item to place after `LLMs` and `Chat model`,
so all items with models are together.
- Renamed `Text embedding models` to `Embedding models`. Now, it is
shorter and easier to read. `Text` is obvious from context. The same as
the `Text LLMs` vs. `LLMs` (we also have multi-modal LLMs).
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->