Neo4j has added vector index integration just recently. To allow both
ingestion and integrating it as vector RAG applications, I wrapped it as
a vector store as the implementation is completely different from
`GraphCypherQAChain`. Here, we are not generating any Cypher statements
at query time, we are simply doing the vector similarity search using
the new vector index as if we were dealing with a vector database.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Update google drive doc loader and retriever notebooks. Show how to use with langchain-googledrive package.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Fixed title for the `extras/integrations/llms/llm_caching.ipynb`.
Existing title breaks the sorted order of items in the navbar.
Updated some formatting.
* Added links to the AI Network
* Made title consistent to other tool kits
* Added `integrations/providers/` integration card page
* **No changes** in the example code!
Mypy was not able to determine a good type for `type_to_loader_dict`,
since the values in the dict are functions whose return types are
related to each other in a complex way. One can see this by adding a
line like `reveal_type(type_to_loader_dict)` and running mypy, which
will get mypy to show what type it has inferred for that value.
Adding an explicit type hint to help out mypy avoids the need for a mypy
suppression and allows the code to type-check cleanly.
In order to use `requires` marker in langchain-experimental, there's a
need for *conftest.py* file inside. Everything is identical to the main
langchain module.
Co-authored-by: maks-operlejn-ds <maks.operlejn@gmail.com>
- Fixed a broken link in the `integrations/providers/infino.mdx`
- Fixed a title in the `integration/collbacks/infino.ipynb` example
- Updated text format in this example.
We always overwrote the required args but we infer them by default.
Doing it only the old way makes it so the llm guesses even if an arg is
optional (e.g., for uuids)
The most reliable way to not have a chain run an undesirable SQL command
is to not give it database permissions to run that command. That way the
database itself performs the rule enforcement, so it's much easier to
configure and use properly than anything we could add in ourselves.
## Description
The following PR enables the [grammar-based
sampling](https://github.com/ggerganov/llama.cpp/tree/master/grammars)
in llama-cpp LLM.
In short, loading file with formal grammar definition will constrain
model outputs. For instance, one can force the model to generate valid
JSON or generate only python lists.
In the follow-up PR we will add:
* docs with some description why it is cool and how it works
* maybe some code sample for some task such as in llama repo
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
Hi LangChain :) Thank you for such a great project!
I was going through the CONTRIBUTING.md and found a few minor issues.
Expose classmethods to convenient initialize the vectostore.
The purpose of this PR is to make it easy for users to initialize an
empty vectorstore that's properly pre-configured without having to index
documents into it via `from_documents`.
This will make it easier for users to rely on the following indexing
code: https://github.com/langchain-ai/langchain/pull/9614
to help manage data in the qdrant vectorstore.