Fix an issue that occurs when using OpenAIChat for llm_math, refer to
the code style of the "Final Answer:" in Mrkl。 the reason is I found a
issue when I try OpenAIChat for llm_math, when I try the question in
Chinese, the model generate the format like "\n\nQuestion: What is the
square of 29?\nAnswer: 841", it translate the question first , then
answer. below is my snapshot:
<img width="945" alt="snapshot"
src="https://user-images.githubusercontent.com/82029664/222642193-10ecca77-db7b-4759-bc46-32a8f8ddc48f.png">
Hello! Thank you for the amazing library you've created!
While following the tutorial at [the link(`Using an example
selector`)](https://langchain.readthedocs.io/en/latest/modules/prompts/examples/few_shot_examples.html#using-an-example-selector),
I noticed that passing Chroma as an argument to from_examples results in
a type hint error.
Error message(mypy):
```
Argument 3 to "from_examples" of "SemanticSimilarityExampleSelector" has incompatible type "Type[Chroma]"; expected "VectorStore" [arg-type]mypy(error)
```
This pull request fixes the type hint and allows the VectorStore class
to be specified as an argument.
Different PDF libraries have different strengths and weaknesses. PyMuPDF
does a good job at extracting the most amount of content from the doc,
regardless of the source quality, extremely fast (especially compared to
Unstructured).
https://pymupdf.readthedocs.io/en/latest/index.html
- Added instructions on setting up self hosted searx
- Add notebook example with agent
- Use `localhost:8888` as example url to stay consistent since public
instances are not really usable.
Co-authored-by: blob42 <spike@w530>
% is being misinterpreted by sqlalchemy as parameter passing, so any
`LIKE 'asdf%'` will result in a value error with mysql, mariadb, and
maybe some others. This is one way to fix it - the alternative is to
simply double up %, like `LIKE 'asdf%%'` but this seemed cleaner in
terms of output.
Fixes#1383
Updating documentation in initialize_agent.
One thing that could benefit from further clarification is the
responsibility
breakdown by between an AgentExecutor vs. an Agent. The documentation
for an
AgentExecutor does not clarify that. From the class attributes, it
appears that
executor has access to the tools, while the agent is only aware of the
tool
names. Anyway, additional clarification would be beneficial on the
AgentExecutor class.
This PR fixes the types returned by Cohere embeddings. Currently, Cohere
client returns instances of `cohere.embeddings.Embeddings`. Since the
transport layer relies on JSON, some numbers might be represented as
ints, not floats, which happens quite often. While that doesn't seem to
be an issue, it breaks some pydantic models if they require strict
floats.
The YAML and JSON examples of prompt serialization now give a strange
`No '_type' key found, defaulting to 'prompt'` message when you try to
run them yourself or copy the format of the files. The reason for this
harmless warning is that the _type key was not in the config files,
which means they are parsed as a standard prompt.
This could be confusing to new users (like it was confusing to me after
upgrading from 0.0.85 to 0.0.86+ for my few_shot prompts that needed a
_type added to the example_prompt config), so this update includes the
_type key just for clarity.
Obviously this is not critical as the warning is harmless, but it could
be confusing to track down or be interpreted as an error by a new user,
so this update should resolve that.
This PR:
- Increases `qdrant-client` version to 1.0.4
- Introduces custom content and metadata keys (as requested in #1087)
- Moves all the `QdrantClient` parameters into the method parameters to
simplify code completion
This PR adds
* `ZeroShotAgent.as_sql_agent`, which returns an agent for interacting
with a sql database. This builds off of `SQLDatabaseChain`. The main
advantages are 1) answering general questions about the db, 2) access to
a tool for double checking queries, and 3) recovering from errors
* `ZeroShotAgent.as_json_agent` which returns an agent for interacting
with json blobs.
* Several examples in notebooks
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Currently, table information is gathered through SQLAlchemy as complete
table DDL and a user-selected number of sample rows from each table.
This PR adds the option to use user-defined table information instead of
automatically collecting it. This will use the provided table
information and fall back to the automatic gathering for tables that the
user didn't provide information for.
Off the top of my head, there are a few cases where this can be quite
useful:
- The first n rows of a table are uninformative, or very similar to one
another. In this case, hand-crafting example rows for a table such that
they provide the good, diverse information can be very helpful. Another
approach we can think about later is getting a random sample of n rows
instead of the first n rows, but there are some performance
considerations that need to be taken there. Even so, hand-crafting the
sample rows is useful and can guarantee the model sees informative data.
- The user doesn't want every column to be available to the model. This
is not an elegant way to fulfill this specific need since the user would
have to provide the table definition instead of a simple list of columns
to include or ignore, but it does work for this purpose.
- For the developers, this makes it a lot easier to compare/benchmark
the performance of different prompting structures for providing table
information in the prompt.
These are cases I've run into myself (particularly cases 1 and 3) and
I've found these changes useful. Personally, I keep custom table info
for a few tables in a yaml file for versioning and easy loading.
Definitely open to other opinions/approaches though!
iFixit is a wikipedia-like site that has a huge amount of open content
on how to fix things, questions/answers for common troubleshooting and
"things" related content that is more technical in nature. All content
is licensed under CC-BY-SA-NC 3.0
Adding docs from iFixit as context for user questions like "I dropped my
phone in water, what do I do?" or "My macbook pro is making a whining
noise, what's wrong with it?" can yield significantly better responses
than context free response from LLMs.
### Summary
Adds a document loader for image files such as `.jpg` and `.png` files.
### Testing
Run the following using the example document from the [`unstructured`
repo](https://github.com/Unstructured-IO/unstructured/tree/main/example-docs).
```python
from langchain.document_loaders.image import UnstructuredImageLoader
loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg")
loader.load()
```
nitpicking but just thought i'd add this typo which I found when going
through the How-to 😄 (unless it was intentional) also, it's amazing that
you added ReAct to LangChain!
Checking if weaviate similarity_search kwargs contains "certainty" and
use it accordingly. The minimal level of certainty must be a float, and
it is computed by normalized distance.
While using a `SQLiteCache`, if there are duplicate `(prompt, llm, idx)`
tuples passed to
[`update_cache()`](c5dd491a21/langchain/llms/base.py (L39)),
then an `IntegrityError` is thrown. This can happen when there are
duplicated prompts within the same batch.
This PR changes the SQLAlchemy `session.add()` to a `session.merge()` in
`cache.py`, [following the solution from this SO
thread](https://stackoverflow.com/questions/10322514/dealing-with-duplicate-primary-keys-on-insert-in-sqlalchemy-declarative-style).
I believe this fixes#983, but not entirely sure since that also
involves async
Here's a minimal example of the error:
```python
from pathlib import Path
import langchain
from langchain.cache import SQLiteCache
llm = langchain.OpenAI(model_name="text-ada-001", openai_api_key=Path("/.openai_api_key").read_text().strip())
langchain.llm_cache = SQLiteCache("test_cache.db")
llm.generate(['a'] * 5)
```
```
> IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed: full_llm_cache.prompt, full_llm_cache.llm, full_llm_cache.idx
[SQL: INSERT INTO full_llm_cache (prompt, llm, idx, response) VALUES (?, ?, ?, ?)]
[parameters: ('a', "[('_type', 'openai'), ('best_of', 1), ('frequency_penalty', 0), ('logit_bias', {}), ('max_tokens', 256), ('model_name', 'text-ada-001'), ('n', 1), ('presence_penalty', 0), ('request_timeout', None), ('stop', None), ('temperature', 0.7), ('top_p', 1)]", 0, '\n\nA is for air.\n\nA is for atmosphere.')]
(Background on this error at: https://sqlalche.me/e/14/gkpj)
```
After the change, we now have the following
```python
class Output:
def __init__(self, text):
self.text = text
# make dummy data
cache = SQLiteCache("test_cache_2.db")
cache.update(prompt="prompt_0", llm_string="llm_0", return_val=[Output("text_0")])
cache.engine.execute("SELECT * FROM full_llm_cache").fetchall()
# output
> [('prompt_0', 'llm_0', 0, 'text_0')]
```
```python
# update data, before change this would have thrown an `IntegrityError`
cache.update(prompt="prompt_0", llm_string="llm_0", return_val=[Output("text_0_new")])
cache.engine.execute("SELECT * FROM full_llm_cache").fetchall()
# output
> [('prompt_0', 'llm_0', 0, 'text_0_new')]
```
Thanks for all your hard work!
I noticed a small typo in the bash util doc so here's a quick update.
Additionally, my formatter caught some spacing in the `.md` as well.
Happy to revert that if it's an issue.
The main change is just
```
- A common use case this is for letting it interact with your local file system.
+ A common use case for this is letting the LLM interact with your local file system.
```
## Testing
`make docs_build` succeeds locally and the changes show as expected ✌️
<img width="704" alt="image"
src="https://user-images.githubusercontent.com/17773666/221376160-e99e59a6-b318-49d1-a1d7-89f5c17cdab4.png">
I've added a simple
[CoNLL-U](https://universaldependencies.org/format.html) document
loader. CoNLL-U is a common format for NLP tasks and is used, for
example, in the Universal Dependencies treebank corpora. The loader
reads a single file in standard CoNLL-U format and returns a document.