Harrison/banana fix (#1311)

Co-authored-by: Erik Dunteman <44653944+erik-dunteman@users.noreply.github.com>
This commit is contained in:
Harrison Chase 2023-02-26 17:53:57 -08:00 committed by GitHub
parent 648b3b3909
commit 81abcae91a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 33 additions and 23 deletions

View File

@ -4,24 +4,28 @@ This page covers how to use the Banana ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
## Installation and Setup
- Install with `pip3 install banana-dev`
- Get an CerebriumAI api key and set it as an environment variable (`BANANA_API_KEY`)
- Get an Banana api key and set it as an environment variable (`BANANA_API_KEY`)
## Define your Banana Template
If you want to use an available language model template you can find one [here](https://app.banana.dev/templates/conceptofmind/serverless-template-palmyra-base).
This template uses the Palmyra-Base model by [Writer](https://writer.com/product/api/).
If you want to use an available language model template you can find one [here](https://app.banana.dev/templates/conceptofmind/serverless-template-palmyra-base).
This template uses the Palmyra-Base model by [Writer](https://writer.com/product/api/).
You can check out an example Banana repository [here](https://github.com/conceptofmind/serverless-template-palmyra-base).
## Build the Banana app
You must include a output in the result. There is a rigid response structure.
Banana Apps must include the "output" key in the return json.
There is a rigid response structure.
```python
# Return the results as a dictionary
result = {'output': result}
```
An example inference function would be:
```python
def inference(model_inputs:dict) -> dict:
global model
@ -31,22 +35,22 @@ def inference(model_inputs:dict) -> dict:
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}
# Run the model
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
)
@ -58,17 +62,18 @@ def inference(model_inputs:dict) -> dict:
You can find a full example of a Banana app [here](https://github.com/conceptofmind/serverless-template-palmyra-base/blob/main/app.py).
## Wrappers
### LLM
There exists an Banana LLM wrapper, which you can access with
There exists an Banana LLM wrapper, which you can access with
```python
from langchain.llms import Banana
```
You need to provide a model key located in the dashboard:
```python
llm = Banana(model_key="YOUR_MODEL_KEY")
```
```

View File

@ -100,10 +100,15 @@ class Banana(LLM, BaseModel):
response = banana.run(api_key, model_key, model_inputs)
try:
text = response["modelOutputs"][0]["output"]
except KeyError:
except (KeyError, TypeError):
returned = response["modelOutputs"][0]
raise ValueError(
f"Response should be {'modelOutputs': [{'output': 'text'}]}."
f"Response was: {response}"
"Response should be of schema: {'output': 'text'}."
f"\nResponse was: {returned}"
"\nTo fix this:"
"\n- fork the source repo of the Banana model"
"\n- modify app.py to return the above schema"
"\n- deploy that as a custom repo"
)
if stop is not None:
# I believe this is required since the stop tokens