- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for Llamafile
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in community llamafile.py
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for HuggingFaceEndpoint
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in community HuggingFaceEndpoint
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Added the [FireCrawl](https://firecrawl.dev) document loader. Firecrawl
crawls and convert any website into LLM-ready data. It crawls all
accessible subpages and give you clean markdown for each.
- **Description:** Adds FireCrawl data loader
- **Dependencies:** firecrawl-py
- **Twitter handle:** @mendableai
ccing contributors: (@ericciarla @nickscamara)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.
See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description: When multithreading is set to True and using the
DirectoryLoader, there was a bug that caused the return type to be a
double nested list. This resulted in other places upstream not being
able to utilize the from_documents method as it was no longer a
`List[Documents]` it was a `List[List[Documents]]`. The change made was
to just loop through the `future.result()` and yield every item.
Issue: #20093
Dependencies: N/A
Twitter handle: N/A
- **Description:** Bug fix. Removed extra line in `GCSDirectoryLoader`
to allow catching Exceptions. Now also logs the file path if Exception
is raised for easier debugging.
- **Issue:** #20198 Bug since langchain-community==0.0.31
- **Dependencies:** No change
- **Twitter handle:** timothywong731
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- make Tencent Cloud VectorDB support metadata filtering.
- implement delete function for Tencent Cloud VectorDB.
- support both Langchain Embedding model and Tencent Cloud VDB embedding
model.
- Tencent Cloud VectorDB support filter search keyword, compatible with
langchain filtering syntax.
- add Tencent Cloud VectorDB TranslationVisitor, now work with self
query retriever.
- more documentations.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Issue `langchain_community.cross_encoders` didn't have flattening
namespace code in the __init__.py file.
Changes:
- added code to flattening namespaces (used #20050 as a template)
- added ut for a change
- added missed `test_imports` for `chat_loaders` and
`chat_message_histories` modules
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
- **Twitter handle:** `@alexsherstinsky`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Last year Microsoft [changed the
name](https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search)
of Azure Cognitive Search to Azure AI Search. This PR updates the
Langchain Azure Retriever API and it's associated docs to reflect this
change. It may be confusing for users to see the name Cognitive here and
AI in the Microsoft documentation which is why this is needed. I've also
added a more detailed example to the Azure retriever doc page.
There are more places that need a similar update but I'm breaking it up
so the PRs are not too big 😄 Fixing my errors from the previous PR.
Twitter: @marlene_zw
Two new tests added to test backward compatibility in
`libs/community/tests/integration_tests/retrievers/test_azure_cognitive_search.py`
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Adds async variants of afrom_texts and
afrom_embeddings into `OpenSearchVectorSearch`, which allows for
`afrom_documents` to be called.
- **Issue:** I implemented this because my use case involves an async
scraper generating documents as and when they're ready to be ingested by
Embedding/OpenSearch
- **Dependencies:** None that I'm aware
Co-authored-by: Ben Mitchell <b.mitchell@reply.com>
- **Description:** In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, I implemented delete method
and all async methods in opensearch_vector_search
- **Dependencies:** No changes
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: deprecating integrations moved to
langchain_google_community"
- [ ] **PR message**: deprecating integrations moved to
langchain_google_community
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Removes required usage of `requests` from `langchain-core`, all of which
has been deprecated.
- removes Tracer V1 implementations
- removes old `try_load_from_hub` github-based hub implementations
Removal done in a way where imports will still succeed, and usage will
fail with a `RuntimeError`.
- **Description:** add `remove_comments` option (default: True): do not
extract html _comments_,
- **Issue:** None,
- **Dependencies:** None,
- **Tag maintainer:** @nfcampos ,
- **Twitter handle:** peter_v
I ran `make format`, `make lint` and `make test`.
Discussion: I my use case, I prefer to not have the comments in the
extracted text:
* e.g. from a Google tag that is added in the html as comment
* e.g. content that the authors have temporarily hidden to make it non
visible to the regular reader
Removing the comments makes the extracted text more alike the intended
text to be seen by the reader.
**Choice to make:** do we prefer to make the default for this
`remove_comments` option to be True or False?
I have changed it to True in a second commit, since that is how I would
prefer to use it by default. Have the
cleaned text (without technical Google tags etc.) and also closer to the
actually visible and intended content.
I am not sure what is best aligned with the conventions of langchain in
general ...
INITIAL VERSION (new version above):
~**Choice to make:** do we prefer to make the default for this
`ignore_comments` option to be True or False?
I have set it to False now to be backwards compatible. On the other
hand, I would use it mostly with True.
I am not sure what is best aligned with the conventions of langchain in
general ...~
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** adds integration with [Layerup
Security](https://uselayerup.com). Docs can be found
[here](https://docs.uselayerup.com). Integrates directly with our Python
SDK.
**Dependencies:**
[LayerupSecurity](https://pypi.org/project/LayerupSecurity/)
**Note**: all methods for our product require a paid API key, so I only
included 1 test which checks for an invalid API key response. I have
tested extensively locally.
**Twitter handle**: [@layerup_](https://twitter.com/layerup_)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
[Dria](https://dria.co/) is a hub of public RAG models for developers to
both contribute and utilize a shared embedding lake. This PR adds a
retriever that can retrieve documents from Dria.
Description: Update `ChatZhipuAI` to support the latest `glm-4` model.
Issue: N/A
Dependencies: httpx, httpx-sse, PyJWT
The previous `ChatZhipuAI` implementation requires the `zhipuai`
package, and cannot call the latest GLM model. This is because
- The old version `zhipuai==1.*` doesn't support the latest model.
- `zhipuai==2.*` requires `pydantic V2`, which is incompatible with
'langchain-community'.
This re-implementation invokes the GLM model by sending HTTP requests to
[open.bigmodel.cn](https://open.bigmodel.cn/dev/api) via the `httpx`
package, and uses the `httpx-sse` package to handle stream events.
---------
Co-authored-by: zR <2448370773@qq.com>
- **Description:** Add attribution_token within
GoogleVertexAISearchRetriever so user can provide this information to
Google support team or product team during debug session.
Reference:
https://cloud.google.com/generative-ai-app-builder/docs/view-analytics#user-events
Attribution tokens. Attribution tokens are unique IDs generated by
Vertex AI Search and returned with each search request. Make sure to
include that attribution token as UserEvent.attributionToken with any
user events resulting from a search. This is needed to identify if a
search is served by the API. Only user events with a Google-generated
attribution token are used to compute metrics.
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** abehsu1992626
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Support reranking based on cross encoder models
available from HuggingFace.
- Added `CrossEncoder` schema
- Implemented `HuggingFaceCrossEncoder` and
`SagemakerEndpointCrossEncoder`
- Implemented `CrossEncoderReranker` that performs similar functionality
to `CohereRerank`
- Added `cross-encoder-reranker.ipynb` to demonstrate how to use it.
Please let me know if anything else needs to be done to make it visible
on the table-of-contents navigation bar on the left, or on the card list
on [retrievers documentation
page](https://python.langchain.com/docs/integrations/retrievers).
- **Issue:** N/A
- **Dependencies:** None other than the existing ones.
---------
Co-authored-by: Kenny Choe <kchoe@amazon.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
This implementation adds functionality from the AlphaVantage API,
renowned for its comprehensive financial data. The class encapsulates
various methods, each dedicated to fetching specific types of financial
information from the API.
### Implemented Functions
- **`search_symbols`**:
- Searches the AlphaVantage API for financial symbols using the provided
keywords.
- **`_get_market_news_sentiment`**:
- Retrieves market news sentiment for a specified stock symbol from the
AlphaVantage API.
- **`_get_time_series_daily`**:
- Fetches daily time series data for a specific symbol from the
AlphaVantage API.
- **`_get_quote_endpoint`**:
- Obtains the latest price and volume information for a given symbol
from the AlphaVantage API.
- **`_get_time_series_weekly`**:
- Gathers weekly time series data for a particular symbol from the
AlphaVantage API.
- **`_get_top_gainers_losers`**:
- Provides details on top gainers, losers, and most actively traded
tickers in the US market from the AlphaVantage API.
### Issue:
- #11994
### Dependencies:
- 'requests' library for HTTP requests. (import requests)
- 'pytest' library for testing. (import pytest)
---------
Co-authored-by: Adam Badar <94140103+adam-badar@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
- **Twitter handle:** `@alexsherstinsky`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: added support for llmsherpa library"
- [x] **Add tests and docs**:
1. Integration test:
'docs/docs/integrations/document_loaders/test_llmsherpa.py'.
2. an example notebook:
`docs/docs/integrations/document_loaders/llmsherpa.ipynb`.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** PR adds support for limiting number of messages
preserved in a session history for DynamoDBChatMessageHistory
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Subject: Fix Type Misdeclaration for index_schema in redis/base.py
I noticed a type misdeclaration for the index_schema column in the
redis/base.py file.
When following the instructions outlined in [Redis Custom Metadata
Indexing](https://python.langchain.com/docs/integrations/vectorstores/redis)
to create our own index_schema, it leads to a Pylance type error. <br/>
**The error message indicates that Dict[str, list[Dict[str, str]]] is
incompatible with the type Optional[Union[Dict[str, str], str,
os.PathLike]].**
```
index_schema = {
"tag": [{"name": "credit_score"}],
"text": [{"name": "user"}, {"name": "job"}],
"numeric": [{"name": "age"}],
}
rds, keys = Redis.from_texts_return_keys(
texts,
embeddings,
metadatas=metadata,
redis_url="redis://localhost:6379",
index_name="users_modified",
index_schema=index_schema,
)
```
Therefore, I have created this pull request to rectify the type
declaration problem.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Feature
- Set additional headers in constructor
- Headers will be sent in post request
This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.
## Tests
- Test if header is passed
- Test if header is not passed
Similar to https://github.com/langchain-ai/langchain/pull/15881
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
If `prompt` is passed into `create_sql_agent()`, then
`toolkit.get_context()` shouldn't be executed against the database
unless relevant prompt variables (`table_info` or `table_names`) are
present .
Description: I implemented a tool to use Hugging Face text-to-speech
inference API.
Issue: n/a
Dependencies: n/a
Twitter handle: No Twitter, but do have
[LinkedIn](https://www.linkedin.com/in/robby-horvath/) lol.
---------
Co-authored-by: Robby <h0rv@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: Implement DirectoryLoader lazy_load
function"
- [x] **Description**: The `lazy_load` function of the `DirectoryLoader`
yields each document separately. If the given `loader_cls` of the
`DirectoryLoader` also implemented `lazy_load`, it will be used to yield
subdocuments of the file.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access:
`libs/community/tests/unit_tests/document_loaders/test_directory_loader.py`
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory:
`docs/docs/integrations/document_loaders/directory.ipynb`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
When testing Nomic embeddings --
```
from langchain_community.embeddings import LlamaCppEmbeddings
embd_model_path = "/Users/rlm/Desktop/Code/llama.cpp/models/nomic-embd/nomic-embed-text-v1.Q4_K_S.gguf"
embd_lc = LlamaCppEmbeddings(model_path=embd_model_path)
embedding_lc = embd_lc.embed_query(query)
```
We were seeing this error for strings > a certain size --
```
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/llama.py:827, in Llama.embed(self, input, normalize, truncate, return_count)
824 s_sizes = []
826 # add to batch
--> 827 self._batch.add_sequence(tokens, len(s_sizes), False)
828 t_batch += n_tokens
829 s_sizes.append(n_tokens)
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/_internals.py:542, in _LlamaBatch.add_sequence(self, batch, seq_id, logits_all)
540 self.batch.token[j] = batch[i]
541 self.batch.pos[j] = i
--> 542 self.batch.seq_id[j][0] = seq_id
543 self.batch.n_seq_id[j] = 1
544 self.batch.logits[j] = logits_all
ValueError: NULL pointer access
```
The default `n_batch` of llama-cpp-python's Llama is `512` but we were
explicitly setting it to `8`.
These need to be set to equal for embedding models.
* The embedding.cpp example has an assertion to make sure these are
always equal.
* Apparently this is not being done properly in llama-cpp-python.
With `n_batch` set to 8, if more than 8 tokens are passed the batch runs
out of space and it crashes.
This also explains why the CPU compute buffer size was small:
raw client with default `n_batch=512`
```
llama_new_context_with_model: CPU input buffer size = 3.51 MiB
llama_new_context_with_model: CPU compute buffer size = 21.00 MiB
```
langchain with `n_batch=8`
```
llama_new_context_with_model: CPU input buffer size = 0.04 MiB
llama_new_context_with_model: CPU compute buffer size = 0.33 MiB
```
We can work around this by passing `n_batch=512`, but this will not be
obvious to some users:
```
embedding = LlamaCppEmbeddings(model_path=embd_model_path,
n_batch=512)
```
From discussion w/ @cebtenzzre. Related:
https://github.com/abetlen/llama-cpp-python/issues/1189
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** The base URL for OpenAI is retrieved from the
environment variable "OPENAI_BASE_URL", whereas for langchain it is
obtained from "OPENAI_API_BASE". By adding `base_url =
os.environ.get("OPENAI_API_BASE")`, the OpenAI proxy can execute
correctly.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- **Description:** added unit tests for NotebookLoader. Linked PR:
https://github.com/langchain-ai/langchain/pull/17614
- **Issue:**
[#17614](https://github.com/langchain-ai/langchain/pull/17614)
- **Twitter handle:** @paulodoestech
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: lachiewalker <lachiewalker1@hotmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Created a Langchain Tool for OpenAI DALLE Image
Generation.
**Issue:**
[#15901](https://github.com/langchain-ai/langchain/issues/15901)
**Dependencies:** n/a
**Twitter handle:** @paulodoestech
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
1. Fix the BiliBiliLoader that can receive cookie parameters, it
requires 3 other parameters to run. The change is backward compatible.
2. Add test;
3. Add example in docs
- **Issue:** [#14213]
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- [x] **PR title**: "community: Support streaming in Azure ML and few
naming changes"
- [x] **PR message**:
- **Description:** Added support for streaming for azureml_endpoint.
Also, renamed and AzureMLEndpointApiType.realtime to
AzureMLEndpointApiType.dedicated. Also, added new classes
CustomOpenAIChatContentFormatter and CustomOpenAIContentFormatter and
updated the classes LlamaChatContentFormatter and LlamaContentFormatter
to now show a deprecated warning message when instantiated.
---------
Co-authored-by: Sachin Paryani <saparan@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Added missing `from_documents` method to `KNNRetriever`,
providing the ability to supply metadata to LangChain `Document`s, and
to give it parity to the other retrievers, which do have
`from_documents`.
- Issue: None
- Dependencies: None
- Twitter handle: None
Co-authored-by: Victor Adan <vadan@netroadshow.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Relates to #17048
Description : Applied fix to dynamodb and elasticsearch file.
Error was : `Cannot override writeable attribute with read-only
property`
Suggestion:
instead of adding
```
@messages.setter
def messages(self, messages: List[BaseMessage]) -> None:
raise NotImplementedError("Use add_messages instead")
```
we can change base class property
`messages: List[BaseMessage]`
to
```
@property
def messages(self) -> List[BaseMessage]:...
```
then we don't need to add `@messages.setter` in all child classes.
**Description:**
While not technically incorrect, the TypeVar used for the `@beta`
decorator prevented pyright (and thus most vscode users) from correctly
seeing the types of functions/classes decorated with `@beta`.
This is in part due to a small bug in pyright
(https://github.com/microsoft/pyright/issues/7448 ) - however, the
`Type` bound in the typevar `C = TypeVar("C", Type, Callable)` is not
doing anything - classes are `Callables` by default, so by my
understanding binding to `Type` does not actually provide any more
safety - the modified annotation still works correctly for both
functions, properties, and classes.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Add our solar chat models, available model choices:
* solar-1-mini-chat
* solar-1-mini-translate-enko
* solar-1-mini-translate-koen
More documents and pricing can be found at
https://console.upstage.ai/services/solar.
The references to our solar model can be found at
* https://arxiv.org/abs/2402.17032
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR allows to calculate token usage for prompts and completion
directly in the generation method of BedrockChat. The token usage
details are then returned together with the generations, so that other
downstream tasks can access them easily.
This allows to define a callback for tokens tracking and cost
calculation, similarly to what happens with OpenAI (see
[OpenAICallbackHandler](https://api.python.langchain.com/en/latest/_modules/langchain_community/callbacks/openai_info.html#OpenAICallbackHandler).
I plan on adding a BedrockCallbackHandler later.
Right now keeping track of tokens in the callback is already possible,
but it requires passing the llm, as done here:
https://how.wtf/how-to-count-amazon-bedrock-anthropic-tokens-with-langchain.html.
However, I find the approach of this PR cleaner.
Thanks for your reviews. FYI @baskaryan, @hwchase17
---------
Co-authored-by: taamedag <Davide.Menini@swisscom.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [x] **PR title**: "community: fix baidu qianfan missing stop
parameter"
- [x] **PR message**:
- **Description: Baidu Qianfan lost the stop parameter when requesting
service due to extracting it from kwargs. This bug can cause the agent
to receive incorrect results
---------
Co-authored-by: ligang33 <ligang33@baidu.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This is a follow up to #18371. These are the changes:
- New **Azure AI Services** toolkit and tools to replace those of
**Azure Cognitive Services**.
- Updated documentation for Microsoft platform.
- The image analysis tool has been rewritten to use the new package
`azure-ai-vision-imageanalysis`, doing a proper replacement of
`azure-ai-vision`.
These changes:
- Update outdated naming from "Azure Cognitive Services" to "Azure AI
Services".
- Update documentation to use non-deprecated methods to create and use
agents.
- Removes need to depend on yanked python package (`azure-ai-vision`)
There is one new dependency that is needed as a replacement to
`azure-ai-vision`:
- `azure-ai-vision-imageanalysis`. This is optional and declared within
a function.
There is a new `azure_ai_services.ipynb` notebook showing usage; Changes
have been linted and formatted.
I am leaving the actions of adding deprecation notices and future
removal of Azure Cognitive Services up to the LangChain team, as I am
not sure what the current practice around this is.
---
If this PR makes it, my handle is @galo@mastodon.social
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description**: `bigdl-llm` library has been renamed to
[`ipex-llm`](https://github.com/intel-analytics/ipex-llm). This PR
migrates the `bigdl-llm` integration to `ipex-llm` .
- **Issue**: N/A. The original PR of `bigdl-llm` is
https://github.com/langchain-ai/langchain/pull/17953
- **Dependencies**: `ipex-llm` library
- **Contribution maintainer**: @shane-huang
Updated doc: docs/docs/integrations/llms/ipex_llm.ipynb
Updated test:
libs/community/tests/integration_tests/llms/test_ipex_llm.py
- **Description:** Add support for Intel Lab's [Visual Data Management
System (VDMS)](https://github.com/IntelLabs/vdms) as a vector store
- **Dependencies:** `vdms` library which requires protobuf = "4.24.2".
There is a conflict with dashvector in `langchain` package but conflict
is resolved in `community`.
- **Contribution maintainer:** [@cwlacewe](https://github.com/cwlacewe)
- **Added tests:**
libs/community/tests/integration_tests/vectorstores/test_vdms.py
- **Added docs:** docs/docs/integrations/vectorstores/vdms.ipynb
- **Added cookbook:** cookbook/multi_modal_RAG_vdms.ipynb
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
If you use an embedding dist function in an eval loop, you get warned
every time. Would prefer to just check once and forget about it.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
* **Description**: add `None` type for `file_path` along with `str` and
`List[str]` types.
* `file_path`/`filename` arguments in `get_elements_from_api()` and
`partition()` can be `None`, however, there's no `None` type hint for
`file_path` in `UnstructuredAPIFileLoader` and `UnstructuredFileLoader`
currently.
* calling the function with `file_path=None` is no problem, but my IDE
annoys me lol.
* **Issue**: N/A
* **Dependencies**: N/A
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Updates Meilisearch vectorstore for compatibility
with v1.6 and above. Adds embedders settings and embedder_name which are
now required.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
PebbloSafeLoader: Add support for non-file-based Document Loaders
This pull request enhances PebbloSafeLoader by introducing support for
several non-file-based Document Loaders. With this update,
PebbloSafeLoader now seamlessly integrates with the following loaders:
- GoogleDriveLoader
- SlackDirectoryLoader
- Unstructured EmailLoader
**Issue:** NA
**Dependencies:** - None
**Twitter handle:** @Raj__725
---------
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Introduction
[Intel® Extension for
Transformers](https://github.com/intel/intel-extension-for-transformers)
is an innovative toolkit designed to accelerate GenAI/LLM everywhere
with the optimal performance of Transformer-based models on various
Intel platforms
Description
adding ITREX runtime embeddings using intel-extension-for-transformers.
added mdx documentation and example notebooks
added embedding import testing.
---------
Signed-off-by: yuwenzho <yuwen.zhou@intel.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Update Azure Document Intelligence implementation by
Microsoft team and RAG cookbook with Azure AI Search
---------
Co-authored-by: Lu Zhang (AI) <luzhan@microsoft.com>
Co-authored-by: Yateng Hong <yatengh@microsoft.com>
Co-authored-by: teethache <hongyateng2006@126.com>
Co-authored-by: Lu Zhang <44625949+luzhang06@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Implemented try-except block for
`GCSDirectoryLoader`. Reason: Users processing large number of
unstructured files in a folder may experience many different errors. A
try-exception block is added to capture these errors. A new argument
`use_try_except=True` is added to enable *silent failure* so that error
caused by processing one file does not break the whole function.
- **Issue:** N/A
- **Dependencies:** no new dependencies
- **Twitter handle:** timothywong731
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Adding oracle autonomous database document loader
integration. This will allow users to connect to oracle autonomous
database through connection string or TNS configuration.
https://www.oracle.com/autonomous-database/
- **Issue:** None
- **Dependencies:** oracledb python package
https://pypi.org/project/oracledb/
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Unit test and doc are added.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Currently the semantic_configurations are not used
when creating an AzureSearch instance, instead creating a new one with
default values. This PR changes the behavior to use the passed
semantic_configurations if it is present, and the existing default
configuration if not.
---------
Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **Add len() implementation to Chroma**: "package: community"
- [x] **PR message**:
- **Description:** add an implementation of the __len__() method for the
Chroma vectostore, for convenience.
- **Issue:** no exposed method to know the size of a Chroma vectorstore
- **Dependencies:** None
- **Twitter handle:** lowrank_adrian
- [x] **Add tests and docs**
- [x] **Lint and test**
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Be more explicit with the `model_kwargs` and
`encode_kwargs` for `HuggingFaceEmbeddings`.
- **Issue:** -
- **Dependencies:** -
I received some reports by my users that they didn't realise that you
could change the default `batch_size` with `HuggingFaceEmbeddings`,
which may be attributed to how the `model_kwargs` and `encode_kwargs`
don't give much information about what you can specify.
I've added some parameter names & links to the Sentence Transformers
documentation to help clear it up. Let me know if you'd rather have
Markdown/Sphinx-style hyperlinks rather than a "bare URL".
- Tom Aarsen
So this arose from the
https://github.com/langchain-ai/langchain/pull/18397 problem of document
loaders not supporting `pathlib.Path`.
This pull request provides more uniform support for Path as an argument.
The core ideas for this upgrade:
- if there is a local file path used as an argument, it should be
supported as `pathlib.Path`
- if there are some external calls that may or may not support Pathlib,
the argument is immidiately converted to `str`
- if there `self.file_path` is used in a way that it allows for it to
stay pathlib without conversion, is is only converted for the metadata.
Twitter handle: https://twitter.com/mwmajewsk
### Issue
Recently, the new `allow_dangerous_deserialization` flag was introduced
for preventing unsafe model deserialization that relies on pickle
without user's notice (#18696). Since then some LLMs like Databricks
requires passing in this flag with true to instantiate the model.
However, this breaks existing functionality to loading such LLMs within
a chain using `load_chain` method, because the underlying loader
function
[load_llm_from_config](f96dd57501/libs/langchain/langchain/chains/loading.py (L40))
(and load_llm) ignores keyword arguments passed in.
### Solution
This PR fixes this issue by propagating the
`allow_dangerous_deserialization` argument to the class loader iff the
LLM class has that field.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Create a Class which allows to use the "text2vec" open source embedding
model.
It should install the model by running 'pip install -U text2vec'.
Example to call the model through LangChain:
from langchain_community.embeddings.text2vec import Text2vecEmbeddings
embedding = Text2vecEmbeddings()
bookend.embed_documents([
"This is a CoSENT(Cosine Sentence) model.",
"It maps sentences to a 768 dimensional dense vector space.",
])
bookend.embed_query(
"It can be used for text matching or semantic search."
)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description:
this change fixes the pydantic validation error when looking up from
GPTCache, the `ChatOpenAI` class returns `ChatGeneration` as response
which is not handled.
use the existing `_loads_generations` and `_dumps_generations` functions
to handle it
Trace
```
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/development/scripts/chatbot-postgres-test.py", line 90, in <module>
print(llm.invoke("tell me a joke"))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 166, in invoke
self.generate_prompt(
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 544, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 408, in generate
raise e
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 398, in generate
self._generate_with_cache(
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 585, in _generate_with_cache
cache_val = llm_cache.lookup(prompt, llm_string)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_community/cache.py", line 807, in lookup
return [
^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_community/cache.py", line 808, in <listcomp>
Generation(**generation_dict) for generation_dict in json.loads(res)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/load/serializable.py", line 120, in __init__
super().__init__(**kwargs)
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for Generation
type
unexpected value; permitted: 'Generation' (type=value_error.const; given=ChatGeneration; permitted=('Generation',))
```
Although I don't seem to find any issues here, here's an
[issue](https://github.com/zilliztech/GPTCache/issues/585) raised in
GPTCache. Please let me know if I need to do anything else
Thank you
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Fixing some issues for AzureCosmosDBSemanticCache
- Added the entry for "AzureCosmosDBSemanticCache" which was missing in
langchain/cache.py
- Added application name when creating the MongoClient for the
AzureCosmosDBVectorSearch, for tracking purposes.
@baskaryan, can you please review this PR, we need this to go in asap.
These are just small fixes which we found today in our testing.
- **Description:** The `semantic_hybrid_search_with_score_and_rerank`
method of `AzureSearch` contains a hardcoded field name "metadata" for
the document metadata in the Azure AI Search Index. Adding such a field
is optional when creating an Azure AI Search Index, as other snippets
from `AzureSearch` test for the existence of this field before trying to
access it. Furthermore, the metadata field name shouldn't be hardcoded
as "metadata" and use the `FIELDS_METADATA` variable that defines this
field name instead. In the current implementation, any index without a
metadata field named "metadata" will yield an error if a semantic answer
is returned by the search in
`semantic_hybrid_search_with_score_and_rerank`.
- **Issue:** https://github.com/langchain-ai/langchain/issues/18731
- **Prior fix to this bug:** This bug was fixed in this PR
https://github.com/langchain-ai/langchain/pull/15642 by adding a check
for the existence of the metadata field named `FIELDS_METADATA` and
retrieving a value for the key called "key" in that metadata if it
exists. If the field named `FIELDS_METADATA` was not present, an empty
string was returned. This fix was removed in this PR
https://github.com/langchain-ai/langchain/pull/15659 (see
ed1ffca911#).
@lz-chen: could you confirm this wasn't intentional?
- **New fix to this bug:** I believe there was an oversight in the logic
of the fix from
[#1564](https://github.com/langchain-ai/langchain/pull/15642) which I
explain below.
The `semantic_hybrid_search_with_score_and_rerank` method creates a
dictionary `semantic_answers_dict` with semantic answers returned by the
search as follows.
5c2f7e6b2b/libs/community/langchain_community/vectorstores/azuresearch.py (L574-L581)
The keys in this dictionary are the unique document ids in the index, if
I understand the [documentation of semantic
answers](https://learn.microsoft.com/en-us/azure/search/semantic-answers)
in Azure AI Search correctly. When the method transforms a search result
into a `Document` object, an "answer" key is added to the document's
metadata. The value for this "answer" key should be the semantic answer
returned by the search from this document, if such an answer is
returned. The match between a `Document` object and the semantic answers
returned by the search should be done through the unique document id,
which is used as a key for the `semantic_answers_dict` dictionary. This
id is defined in the search result's field named `FIELDS_ID`. I added a
check to avoid any error in case no field named `FIELDS_ID` exists in a
search result (which shouldn't happen in theory).
A benefit of this approach is that this fix should work whether or not
the Azure AI Search Index contains a metadata field.
@levalencia could you confirm my analysis and test the fix?
@raunakshrivastava7 do you agree with the fix?
Thanks for the help!
### Prem SDK integration in LangChain
This PR adds the integration with [PremAI's](https://www.premai.io/)
prem-sdk with langchain. User can now access to deployed models
(llms/embeddings) and use it with langchain's ecosystem. This PR adds
the following:
### This PR adds the following:
- [x] Add chat support
- [X] Adding embedding support
- [X] writing integration tests
- [X] writing tests for chat
- [X] writing tests for embedding
- [X] writing unit tests
- [X] writing tests for chat
- [X] writing tests for embedding
- [X] Adding documentation
- [X] writing documentation for chat
- [X] writing documentation for embedding
- [X] run `make test`
- [X] run `make lint`, `make lint_diff`
- [X] Final checks (spell check, lint, format and overall testing)
---------
Co-authored-by: Anindyadeep Sannigrahi <anindyadeepsannigrahi@Anindyadeeps-MacBook-Pro.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** PgVector class always runs "create extension" on init
and this statement crashes on ReadOnly databases (read only replicas).
but wierdly the next create collection etc work even in readOnly
databases
- **Dependencies:** no new dependencies
- **Twitter handle:** @VenOmaX666
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:**
- minor PR to speed up onboarding by not trying to add a dataset, if a
model is already present.
- replace batch publish API with streaming when single events are
published.
**Dependencies:** any dependencies required for this change
**Twitter handle:** behalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
**Description:**
Expanding version in all the Confluence API calls so to get when the
page was last modified/created in all cases.
**Issue:** #12812
**Twitter handle:** zzste
This PR adds code to make sure that the correct base URL is being
created for the Azure Cognitive Search retriever. At the moment an
incorrect base URL is being generated. I think this is happening because
the original code was based on a depreciated API version. No
dependencies need to be added. I've also added more context to the test
doc strings.
I should also note that ACS is now Azure AI Search. I will open a
separate PR to make these changes as that would be a breaking change and
should potentially be discussed.
Twitter: @marlene_zw
- No new tests added, however the current ACS retriever tests are now
passing when I run them.
- Code was linted.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** This commit introduces support for the newly
available GPU index types introduced in Milvus 2.4 within the LangChain
project's `milvus.py`. With the release of Milvus 2.4, a range of
GPU-accelerated index types have been added, offering enhanced search
capabilities and performance optimizations for vector search operations.
This update ensures LangChain users can fully utilize the new
performance benefits for vector search operations.
- Reference: https://milvus.io/docs/gpu_index.md
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This patch fixes the #18022 issue, converting the SimSIMD internal
zero-copy outputs to NumPy.
I've also noticed, that oftentimes `dtype=np.float32` conversion is used
before passing to SimSIMD. Which numeric types do LangChain users
generally care about? We support `float64`, `float32`, `float16`, and
`int8` for cosine distances and `float16` seems reasonable for
practically any kind of embeddings and any modern piece of hardware, so
we can change that part as well 🤗
- **Description:** Added support for lower-case and mixed-case names
The names for tables and columns previouly had to be UPPER_CASE.
With this enhancement, also lower_case and MixedCase are supported,
- **Issue:** N/A
- **Dependencies:** no new dependecies added
- **Twitter handle:** @sapopensource
Description: adds support for langchain_cohere
---------
Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Updated `HuggingFacePipeline` docs to be in sync with list of supported
tasks, including translation.
- [x] **PR title**: "community: Update docs for `HuggingFacePipeline`"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**:
- **Description:** Update docs for `HuggingFacePipeline`, was earlier
missing `translation` as a valid task
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** None
- [x] **Add tests and docs**:
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
**Description:**
This PR adds [Dappier](https://dappier.com/) for the chat model. It
supports generate, async generate, and batch functionalities. We added
unit and integration tests as well as a notebook with more details about
our chat model.
**Dependencies:**
No extra dependencies are needed.
DuckDB has a cosine similarity function along list and array data types,
which can be used as a vector store.
- **Description:** The latest version of DuckDB features a cosine
similarity function, which can be used with its support for list or
array column types. This PR surfaces this functionality to langchain.
- **Dependencies:** duckdb 0.10.0
- **Twitter handle:** @igocrite
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Update s3_file.py to use arguments **mode** and
**post_processors** from the base class **UnstructuredBaseLoader** to
include more metadata about the files from the S3 bucket such as
*'page_number', 'languages'* etc.
**Issue:** NA
**Dependencies:** None
**Twitter handle:** preak95
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Invoke callback prior to yielding token for BaseOpenAI
& OpenAIChat
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
**Description:** Invoke callback prior to yielding token for Fireworks
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
I have a small dataset, and I tried to use docarray:
``DocArrayHnswSearch ``. But when I execute, it returns:
```bash
raise ImportError(
ImportError: Could not import docarray python package. Please install it with `pip install "langchain[docarray]"`.
```
Instead of docarray it needs to be
```bash
docarray[hnswlib]
```
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
RecursiveUrlLoader does not currently provide an option to set
`base_url` other than the `url`, though it uses a function with such an
option.
For example, this causes it unable to parse the
`https://python.langchain.com/docs`, as it returns the 404 page, and
`https://python.langchain.com/docs/get_started/introduction` has no
child routes to parse.
`base_url` allows setting the `https://python.langchain.com/docs` to
filter by, while the starting URL is anything inside, that contains
relevant links to continue crawling.
I understand that for this case, the docusaurus loader could be used,
but it's a common issue with many websites.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Invoke callback prior to yielding token for llama.cpp
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
This is a basic VectorStore implementation using an in-memory dict to
store the documents.
It doesn't need any extra/optional dependency as it uses numpy which is
already a dependency of langchain.
This is useful for quick testing, demos, examples.
Also it allows to write vendor-neutral tutorials, guides, etc...