Todo
- [x] copy over integration tests
- [x] update docs with new instructions in #15513
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models
Contributor steps:
- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml
Maintainer steps (Contributors should not do these):
- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge
Functional changes to existing classes:
- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package
Codebase organization
- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Removes unused `Params` in `libs/langchain/langchain/llms/mlflow.py`.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The example code for `llms.Mlflow` is outdated.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** `MarkdownHeaderTextSplitter` currently strips header
lines from chunked content. Many applications require these header lines
are preserved. This adds an optional parameter to preserve those headers
in the chunked content.
- **Issue:** #2836 (relevant)
- **Dependencies:** -
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @finnless
Unit tests and new examples in notebook included.
cc @rlancemartin
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adds `WasmChat` integration. `WasmChat` runs GGUF models locally or via
chat service in lightweight and secure WebAssembly containers. In this
PR, `WasmChatService` is introduced as the first step of the
integration. `WasmChatService` is driven by
[llama-api-server](https://github.com/second-state/llama-utils) and
[WasmEdge Runtime](https://wasmedge.org/).
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
Follow up on https://github.com/langchain-ai/langchain/pull/13048.
This PR intends to simplify the Qdrant async implementation by replacing
the internal GRPC methods with the `QdrantAsyncClient` methods.
This is a backward compatible change with no additional steps required
after merge.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixes#14347
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Added the traceback of the previous error to keep the
initial error type,
- **Issue:** #14347 ,
- **Dependencies:** None,
- **Tag maintainer:**
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Julien Raffy <julien.raffy@emeria.eu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** the ability to add all extra parameter of vectorstore
and using them SemanticSimilarityExampleSelector.
- **Issue:** #14583
- **Dependencies:** no dependensies
- **Tag maintainer:**
- **Twitter handle:** @AmirMalekiz
---------
Co-authored-by: Amir Maleki <amaleki@fb.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Add support for setting the `score_threshold` for
similarity search in SupabaseVectoreStore.
This pull request addresses issue #14438
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** changed json.py to handle additional cases of partial
json string to be parsed, basically by dropping the last character in
the string until a valid json string is found or the string is empty.
Also added additional test cases.
- **Issue:** function parse_partial_json could not parse cases where the
key is present but the value is not.
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Because Milvus' collection_name doesn't support UFT8 characters in other
languages, I want the `collection_descriotion`.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Fix for processing for serpapi response for Google Maps
API
**Issue:** Due to the fact corresponding
[api](https://serpapi.com/google-maps-api) returns 'local_results' as
list, and old version requested `res["local_results"].keys()` of the
list. As the result we got exception: ```AttributeError: 'list' object
has no attribute 'keys'```.
Way to reproduce wrong behaviour:
```
params = {
"engine": "google_maps",
"type": "search",
"google_domain": "google.de",
"ll": "@51.1917,10.525,14z",
"hl": "de",
"gl": "de",
}
search = SerpAPIWrapper(params=params)
results = search.run("cafe")
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Ran <rccalman@gmail.com>
Because Milvus doesn't support nullable fields, but document metadata is
very rich, so it makes more sense to store it as json.
https://github.com/milvus-io/pymilvus/issues/1705#issuecomment-1731112372
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR integrates LangChain vectorstore with BigQuery Vector Search.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Vlad Kolesnikov <vladkol@google.com>
- **Description:** replace score_threshold with args
- **Issue:** needs a way to pass more options to similarity search
- **Dependencies:** None
- **Twitter handle:** @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
- **Description:** Tool now supports querying over 200 million
scientific articles, vastly expanding its reach beyond the 2 million
articles accessible through Arxiv. This update significantly broadens
access to the entire scope of scientific literature.
- **Dependencies:** semantischolar
https://github.com/danielnsilva/semanticscholar
- **Twitter handle:** @shauryr
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…tch]: import models from community
ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
- easier to write custom logic/loops with automatic tracing
- if you don't want to streaming support write a regular function and
pass to RunnableLambda
- if you do want streaming write a generator and pass it to
RunnableGenerator
```py
import json
from typing import AsyncIterator
from langchain_core.messages import BaseMessage, FunctionMessage, HumanMessage
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import Runnable, RunnableGenerator, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.tools.render import format_tool_to_openai_function
def _get_tavily():
from langchain.tools.tavily_search import TavilySearchResults
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
tavily_search = TavilySearchAPIWrapper()
return TavilySearchResults(api_wrapper=tavily_search)
async def _agent_executor_generator(
input: AsyncIterator[list[BaseMessage]],
*,
max_iterations: int = 10,
tools: dict[str, BaseTool],
agent: Runnable[list[BaseMessage], BaseMessage],
parser: Runnable[BaseMessage, AgentAction | AgentFinish],
) -> AsyncIterator[BaseMessage]:
messages = [m async for mm in input for m in mm]
for _ in range(max_iterations):
next_message = await agent.ainvoke(messages)
yield next_message
messages.append(next_message)
parsed = await parser.ainvoke(next_message)
if isinstance(parsed, AgentAction):
result = await tools[parsed.tool].ainvoke(parsed.tool_input)
next_message = FunctionMessage(name=parsed.tool, content=json.dumps(result))
yield next_message
messages.append(next_message)
elif isinstance(parsed, AgentFinish):
return
def get_agent_executor(tools: list[BaseTool], system_message: str):
llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0, streaming=True)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_message),
MessagesPlaceholder(variable_name="messages"),
]
)
llm_with_tools = llm.bind(
functions=[format_tool_to_openai_function(t) for t in tools]
)
agent = {"messages": RunnablePassthrough()} | prompt | llm_with_tools
parser = OpenAIFunctionsAgentOutputParser()
executor = RunnableGenerator(_agent_executor_generator)
return executor.bind(
tools={tool.name for tool in tools}, agent=agent, parser=parser
)
agent = get_agent_executor([_get_tavily()], "You are a very nice agent!")
async def main():
async for message in agent.astream(
[HumanMessage(content="whats the weather in sf tomorrow?")]
):
print(message)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
```
results in this trace
https://smith.langchain.com/public/fa17f05d-9724-4d08-8fa1-750f8fcd051b/r
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** SingleFileFacebookMessengerChatLoader did not handle
the case for when messages had stickers and/or photos so fixed that.
- **Issue:** #15356
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** updates/enhancements to IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider
(prompt tuned models and prompt templates deployments support)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** : @hwchase17 , @eyurtsev , @baskaryan
- **Twitter handle:** details in comment below.
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The fix#14221 has broken default gitlab url which is forcing the users
to specify GITLAB_URL for default one. With this fix if GITLAB_URL is
not set, the default gitlab url will be taken.
- **Description:** Add the GITHUB URL instead of None
- **Issue:** the issue #14221 has broken the default github URL
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
- **Twitter handle:** manjunath_shiva
- **Description:** This PR adds `api_base` to `_client_params` in the
`chat_model` of LiteLLM to ensure it's included in API calls.
Previously, `api_base` was set on the client but was not included in the
parameters passed to the completion function. This change ensures that
`api_base` is correctly passed to all API calls.
- **Issue:** #14338
- **Tag maintainer:** @hwchase17 @agola11
- **Twitter handle:** @LMS_David_RS
Sometimes, the tool_schema is like:
` {'action_name': 'search_items', 'action': {'term': 'pizza'}}`
sometimes, specially with gpt3.5 it comes like:
`{'action_name': 'search_items', 'term': 'pizza'}`
and it fails.
This PR is a way to make it work in both scenarios.
issues releated: #6624
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Lucca Zenobio <lucca.zenobio@ifood.com.br>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change addresses the issue where DashScopeEmbeddingAPI limits
requests to 25 lines of data, and DashScopeEmbeddings did not handle
cases with more than 25 lines, leading to errors. I have implemented a
fix to manage data exceeding this limit efficiently.
---------
Co-authored-by: xuxiang <xuxiang@aliyun.com>
Adding to my previously, already merged PR I made some further
improvements:
* Added documentation to the existing Pydantic Parser notebook, with an
example using LCEL and `with_retry()` on `OutputParserException`.
* Added an additional output example to the prompt
* More lenient parser in terms of LLM output format
* Amended unit test
FYI @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Update _retrieve_ref inside json_schema.py to include
an isdigit() check
- **Issue:** This library is used inside dereference_refs inside
langchain_community.agent_toolkits.openapi.spec. When I read in a yaml
file which has references for "400", "401" etc; the line "out =
out[component]" causes a KeyError. The isdigit() check ensures that if
it is an integer like "400" or "401"; it converts it into integer before
using it as a key to prevent the error.
- **Dependencies:** No dependencies
- **Tag maintainer:** @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The regex used to match "Action" and "Action Input" in the output parser
has been updated. Previously, the regex did not correctly handle
multi-line inputs for "Action Input". The updated code uses the
're.DOTALL' flag to ensure multi-line inputs are correctly captured.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:**
- This PR introduces a significant enhancement to the LangChain project
by integrating a new chat model powered by the third-generation base
large model, ChatGLM3, via the zhipuai API.
- This advanced model supports functionalities like function calls, code
interpretation, and intelligent Agent capabilities.
- The additions include the chat model itself, comprehensive
documentation in the form of Python notebook docs, and thorough testing
with both unit and integrated tests.
- **Dependencies:** This update relies on the ZhipuAI package as a key
dependency.
- **Twitter handle:** If this PR receives spotlight attention, we would
be honored to receive a mention for our integration of the advanced
ChatGLM3 model via the ZhipuAI API. Kindly tag us at @kaiwu.
To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
TO DO: Continue refining and enhancing both the unit tests and
integrated tests.
---------
Co-authored-by: jing <jingguo92@gmail.com>
Co-authored-by: hyy1987 <779003812@qq.com>
Co-authored-by: jianchuanqi <qijianchuan@hotmail.com>
Co-authored-by: lirq <whuclarence@gmail.com>
Co-authored-by: whucalrence <81530213+whucalrence@users.noreply.github.com>
Co-authored-by: Jing Guo <48378126+JaneCrystall@users.noreply.github.com>
Description: Volcano Ark is an enterprise-grade large-model service
platform for developers, providing a full range of functions and
services such as model training, inference, evaluation, fine-tuning. You
can visit its homepage at https://www.volcengine.com/docs/82379/1099455
for details. This change could help developers use the platform for
embedding.
Issue: None
Dependencies: volcengine
Tag maintainer: @baskaryan
Twitter handle: @hinnnnnnnnnnnns
---------
Co-authored-by: lujingxuansc <lujingxuansc@bytedance.com>
**Description:** the MWDumpLoader implementation currently does not
support the lazy_load method, and the files are usually very large. We
are proposing refactoring the load function, extracting two private
functions with the functionality of loading the dump file and parsing a
single page, to reuse the code in the lazy_load implementation.
**Description:**
This PR adds the `**kwargs` parameter to six calls in the `chroma.py`
package. All functions already were able to receive `kwargs` but they
were discarded before.
**Issue:**
When passing `kwargs` to functions in the `chroma.py` package they are
being ignored.
For example:
```
chroma_instance.similarity_search_with_score(
query,
k=100,
include=["metadatas", "documents", "distances", "embeddings"], # this parameter gets ignored
)
```
The `include` parameter does not get passed on to the next function and
does not have any effect.
**Dependencies:**
None
- **Description:**
- support custom kwargs in object initialization. For instantance, QPS
differs from multiple object(chat/completion/embedding with diverse
models), for which global env is not a good choice for configuration.
- **Issue:** no
- **Dependencies:** no
- **Twitter handle:** no
@baskaryan PTAL
These can happen for edge cases not covered by `default` handler (eg.
"strange" keys in dicts)
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Any direct usage of ThreadPoolExecutor or asyncio.run_in_executor
needs manual handling of context vars
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** fix parse issue for AIMessageChunk when using
- **Issue:** https://github.com/langchain-ai/langchain/issues/14511
- **Dependencies:** none
- **Twitter handle:** none
Taken from this fix:
https://github.com/gpt-engineer-org/gpt-engineer/issues/804#issuecomment-1769853850
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** fixes and upgrades for the Tongyi LLM and ChatTongyi
Model
- Fixed typos; it should be `Tongyi`, not `OpenAI`.
- Fixed a bug in `stream_generate_with_retry`; it's a real stream
generator now.
- Fixed a bug in `validate_environment`; the `dashscope_api_key` should
be properly handled when set by environment variables or initialization
parameters.
- Changed the `dashscope` response to incremental output by setting the
parameter `incremental_output`, which eliminates the need for the
prefix-removal trick.
- Removed some unused parameters, like `n`, `prefix_messages`.
- Added `_stream` method.
- Added async methods support, such as `_astream`, `_agenerate`,
`_abatch`.
- **Dependencies:** No new dependencies.
- **Tag maintainer:** @hwchase17
> PS: Some may be confused about the terms `dashscope`, `tongyi`, and
`Qwen`:
> - `dashscope`: A platform to deploy LLMs and provide APIs to invoke
the LLM.
> - `tongyi`: A brand name or overall term about Alibaba Cloud's LLM/AI.
> - `Qwen`: An LLM that is open-sourced and deployed in `dashscope`.
>
> We use the `dashscope` SDK to interact with the `tongyi`-`Qwen` LLM.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Correcting a small typo ('the' instead of 'then') and changing another
'the' (instead of 'then' too, it was a hard day for the 'n' key :D) to
'also' to match better with what is done in the code
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- do not match text after - in the middle of a sentence
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…parse
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
```shell
Python 3.11.6 (main, Nov 2 2023, 04:39:43) [Clang 14.0.3 (clang-1403.0.22.14.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> s = {'name': 'gc', 'arguments': '{"prompt":"hi\nbob."}'}
>>> import json
>>> json.loads(s['arguments'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/__init__.py", line 346, in loads
return _default_decoder.decode(s)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/decoder.py", line 337, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/decoder.py", line 353, in raw_decode
obj, end = self.scan_once(s, idx)
^^^^^^^^^^^^^^^^^^^^^^
json.decoder.JSONDecodeError: Invalid control character at: line 1 column 14 (char 13)
>>> json.loads(s['arguments'].replace('\n', '\\n'))
{'prompt': 'hi\nbob.'}
>>>
```
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
While using `chain.batch`, the default implementation uses a
`ThreadPoolExecutor` and run the chains in separate threads. An issue
with this approach is that that [the token counting
callback](https://python.langchain.com/docs/modules/callbacks/token_counting)
fails to work as a consequence of the context not being propagated
between threads. This PR adds context propagation to the new threads and
adds some thread synchronization in the OpenAI callback. With this
change, the token counting callback works as intended.
Having the context propagation change would be highly beneficial for
those implementing custom callbacks for similar functionalities as well.
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
- Enables strict=False by default
- Uses partial json recovery logic by default
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
- **Description:** The Github error prompt is confused because of JWT
enctrypt to somebody not familiar with Github connection method. This PR
is to add some useful error prompt to help users troubleshooting.
- **Issue:**
https://github.com/langchain-ai/langchain/issues/14550#issuecomment-1867445049
- **Dependencies:** None,
- **Twitter handle:** None
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…ableBinding
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…unnableAssign or RunnablePick
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Implement stream and astream methods for RunnableLambda
to make streaming work for functions returning Runnable
- **Issue:** https://github.com/langchain-ai/langchain/issues/11998
- **Dependencies:** No new dependencies
- **Twitter handle:** https://twitter.com/qtangs
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
**Description:**
Adding async methods to booth OllamaLLM and ChatOllama to enable async
streaming and async .on_llm_new_token callbacks.
**Issue:**
ChatOllama is not working in combination with an AsyncCallbackManager
because the .on_llm_new_token method is not awaited.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Added ensure_ascii property to ElasticsearchChatMessageHistory
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Ivan Chetverikov <ivan.chetverikov@raftds.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description**: The parameter chunk_type was being hard coded to
"extractive_answers", so that when "snippet" was being passed, it was
being ignored. This change simply doesn't do that.
Added the call function get_summaries_as_docs inside of Arxivloader
- **Description:** Added a function that returns the documents from
get_summaries_as_docs, as the call signature is present in the parent
file but never used from Arxivloader, this can be used from Arxivloader
itself just like .load() as both the signatures are same.
- **Issue:** Reduces time to load papers as no pdf is processed only
metadata is pulled from Arxiv allowing users for faster load times on
bulk loads. Users can then choose one or more paper and use ID directly
with .load() to load pdf thereby loading all the contents of the paper.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## Description
Changes the behavior of `add_user_message` and `add_ai_message` to allow
for messages of those types to be passed in. Currently, if you want to
use the `add_user_message` or `add_ai_message` methods, you have to pass
in a string. For `add_message` on `ChatMessageHistory`, however, you
have to pass a `BaseMessage`. This behavior seems a bit inconsistent.
Personally, I'd love to be able to be explicit that I want to
`add_user_message` and pass in a `HumanMessage` without having to grab
the `content` attribute. This PR allows `add_user_message` to accept
`HumanMessage`s or `str`s and `add_ai_message` to accept `AIMessage`s or
`str`s to add that functionality and ensure backwards compatibility.
## Issue
* None
## Dependencies
* None
## Tag maintainer
@hinthornw
@baskaryan
## Note
`make test` results in `make: *** No rule to make target 'test'. Stop.`
- **Description:** `tools.gmail.send_message` implements a
`SendMessageSchema` that is not used anywhere. `GmailSendMessage` also
does not have an `args_schema` attribute (this led to issues when
invoking the tool with an OpenAI functions agent, at least for me). Here
we add the missing attribute and a minimal test for the tool.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
---------
Co-authored-by: Chester Curme <chestercurme@microsoft.com>
- **Description:** In response to user feedback, this PR refactors the
Baseten integration with updated model endpoints, as well as updates
relevant documentation. This PR has been tested by end users in
production and works as expected.
- **Issue:** N/A
- **Dependencies:** This PR actually removes the dependency on the
`baseten` package!
- **Twitter handle:** https://twitter.com/basetenco
# Description
This PR adds the ability to pass a `botocore.config.Config` instance to
the boto3 client instantiated by the Bedrock LLM.
Currently, the Bedrock LLM doesn't support a way to pass a Config, which
means that some settings (e.g., timeouts and retry configuration)
require instantiating a new boto3 client with a Config and then
replacing the LLM's client:
```python
llm = Bedrock(
region_name='us-west-2',
model_id="anthropic.claude-v2",
model_kwargs={'max_tokens_to_sample': 4096, 'temperature': 0},
)
llm.client = boto_client('bedrock-runtime', region_name='us-west-2', config=Config({'read_timeout': 300}))
```
# Issue
N/A
# Dependencies
N/A
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
fix spellings
**seperate -> separate**: found more occurrences, see
https://github.com/langchain-ai/langchain/pull/14602
**initialise -> intialize**: the latter is more common in the repo
**pre-defined > predefined**: adding a comma after a prefix is a
delicate matter, but this is a generally accepted word
also, another word that appears in the repo is "fs" (stands for
filesystem), e.g., in `libs/core/langchain_core/prompts/loading.py`
` """Unified method for loading a prompt from LangChainHub or local
fs."""`
Isn't "filesystem" better?
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Ran <rccalman@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This PR fixes test failures on Windows caused by path
handling differences and unescaped special characters in regex. The
failing tests are:
```
FAILED tests/unit_tests/storage/test_filesystem.py::test_yield_keys - AssertionError: assert ['key1', 'subdir\\key2'] == ['key1', 'subdir/key2']
FAILED tests/unit_tests/test_imports.py::test_importable_all - ModuleNotFoundError: No module named 'langchain_community.langchain_community\\adapters'
FAILED tests/unit_tests/tools/file_management/test_utils.py::test_get_validated_relative_path_errs_on_absolute - re.error: incomplete escape \U at position 53
FAILED tests/unit_tests/tools/file_management/test_utils.py::test_get_validated_relative_path_errs_on_parent_dir - re.error: incomplete escape \U at position 69
FAILED tests/unit_tests/tools/file_management/test_utils.py::test_get_validated_relative_path_errs_for_symlink_outside_root - re.error: incomplete escape \U at position 64
```
- **Issue:** fixes
https://github.com/langchain-ai/langchain/issues/11775 (partially)
- **Dependencies:** none
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Builds on #14040 with community refactor merged and notebook updated.
Note that with this refactor, models will be imported from
`langchain_community.chat_models.huggingface` rather than the main
`langchain` repo.
---------
Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
Signed-off-by: Yuchen Liang <yuchenl3@andrew.cmu.edu>
Co-authored-by: Andrew Reed <andrew.reed.r@gmail.com>
Co-authored-by: Andrew Reed <areed1242@gmail.com>
Co-authored-by: A-Roucher <aymeric.roucher@gmail.com>
Co-authored-by: Aymeric Roucher <69208727+A-Roucher@users.noreply.github.com>
Replace this entire comment with:
- **Description:** @kurtisvg has raised a point that it's a good idea to
have a fixed version for embeddings (since otherwise a user might run a
query with one version vs a vectorstore where another version was used).
In order to avoid breaking changes, I'd suggest to give users a warning,
and make a `model_name` a required argument in 1.5 months.
Surrealdb client changes from 0.3.1 to 0.3.2 broke the surrealdb vectore
integration.
This PR updates the code to work with the updated client. The change is
backwards compatible with previous versions of surrealdb client.
Also expanded the vector store implementation to store and retrieve
metadata that's included with the document object.
- **Description:** Fixed jaguar.py to import JaguarHttpClient with try
and catch
- **Issue:** the issue # Unable to use the JaguarHttpClient at run time
- **Dependencies:** It requires "pip install -U jaguardb-http-client"
- **Twitter handle:** workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**
For the Momento Vector Index (MVI) vector store implementation, pass
through `filter_expression` kwarg to the MVI client, if specified. This
change will enable the MVI self query implementation in a future PR.
Also fixes some integration tests.
- **Description:** Fix typo in class Docstring to replace
AZURE_OPENAI_API_ENDPOINT by AZURE_OPENAI_ENDPOINT
- **Issue:** the issue #14901
- **Dependencies:** NA
- **Twitter handle:**
Co-authored-by: Yacine Bouakkaz <Yacine.Bouakkaz@evokegroup.com>
* This PR adds `stream` implementations to Runnable Branch.
* Runnable Branch still does not support `transform` so it'll break streaming if it happens in middle or end of sequence, but will work if happens at beginning of sequence.
* Fixes use the async callback manager for async methods
* Handle BaseException rather than Exception, so more errors could be logged as errors when they are encountered
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description: Adding Summarization to Vectara, to reflect it provides not
only vector-store type functionality but also can return a summary.
Also added:
MMR capability (in the Vectara platform side)
Updated templates
Updated documentation and IPYNB examples
Tag maintainer: @baskaryan
Twitter handle: @ofermend
---------
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
**What is the reproduce code?**
```python
from langchain.chains import LLMChain, load_chain
from langchain.llms import Databricks
from langchain.prompts import PromptTemplate
def transform_output(response):
# Extract the answer from the responses.
return str(response["candidates"][0]["text"])
def transform_input(**request):
full_prompt = f"""{request["prompt"]}
Be Concise.
"""
request["prompt"] = full_prompt
return request
chat_model = Databricks(
endpoint_name="llama2-13B-chat-Brambles",
transform_input_fn=transform_input,
transform_output_fn=transform_output,
verbose=True,
)
print(f"Test chat model: {chat_model('What is Apache Spark')}") # This works
llm_chain = LLMChain(llm=chat_model, prompt=PromptTemplate.from_template("{chat_input}"))
llm_chain("colorful socks") # this works
llm_chain.save("databricks_llm_chain.yaml") # transform_input_fn and transform_output_fn are not serialized into the model yaml file
loaded_chain = load_chain("databricks_llm_chain.yaml") # The Databricks LLM is recreated with transform_input_fn=None, transform_output_fn=None.
loaded_chain("colorful socks") # Thus this errors. The transform_output_fn is needed to produce the correct output
```
Error:
```
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-6c34afab-3473-421d-877f-1ef18930ef4d/lib/python3.10/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for Generation
text
str type expected (type=type_error.str)
request payload: {'query': 'What is a databricks notebook?'}'}
```
**What does the error mean?**
When the LLM generates an answer, represented by a Generation data
object. The Generation data object takes a str field called text, e.g.
Generation(text=”blah”). However, the Databricks LLM tried to put a
non-str to text, e.g. Generation(text={“candidates”:[{“text”: “blah”}]})
Thus, pydantic errors.
**Why the output format becomes incorrect after saving and loading the
Databricks LLM?**
Databrick LLM does not support serializing transform_input_fn and
transform_output_fn, so they are not serialized into the model yaml
file. When the Databricks LLM is loaded, it is recreated with
transform_input_fn=None, transform_output_fn=None. Without
transform_output_fn, the output text is not unwrapped, thus errors.
Missing transform_output_fn causes this error.
Missing transform_input_fn causes the additional prompt “Be Concise.” to
be lost after saving and loading.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
This PR intends to add support for Qdrant's new [sparse vector
retrieval](https://qdrant.tech/articles/sparse-vectors/) by introducing
a new retriever class, `QdrantSparseVectorRetriever`.
Necessary usage docs and integration tests have been added for the
retriever.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
This PR fixes the issue faces with duplicate input id in Clarifai
vectorstore class when ingesting documents into the vectorstore more
than the batch size.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Similar to https://github.com/langchain-ai/langchain/issues/5861, I've
experienced `KeyError`s resulting from unsafe lookups in the
`convert_dict_to_message` function in [this
file](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/adapters/openai.py).
While that issue focused on `KeyError 'content'`, I've opened another
issue (#14764) about how the problem still exists in the same function
but with `KeyError 'role'`. The fix for #5861 only added a safe lookup
to the specific line that was giving them trouble.. This PR fixes the
unsafe lookup in the rest of the function but the problem still exists
across the repo.
## Issues
* #14764
* #5861
## Dependencies
* None
## Checklist
[x] make format
[x] make lint
[ ] make test - Results in `make: *** No rule to make target 'test'.
Stop.`
## Maintainers
* @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR adds support for PygmalionAI's [Aphrodite
Engine](https://github.com/PygmalionAI/aphrodite-engine), based on
vLLM's attention mechanism. At the moment, this PR does not include
support for the API servers, but they will be added in a later PR.
The only dependency as of now is `aphrodite-engine==0.4.2`. We pin the
version to prevent breakage due to changes in the aphrodite-engine
library.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Introducing an ability to work with the
[YandexGPT](https://cloud.yandex.com/en/services/yandexgpt) embeddings
models.
---------
Co-authored-by: Dmitry Tyumentsev <dmitry.tyumentsev@raftds.com>
- **Description:** Modify community chat model vertexai to handle png
and other image types encoded in base64
- **Dependencies:** added `import re` but no new dependencies.
This addresses a problem where the vertexai method
_parse_chat_history_gemini() was only recognizing image uris in jpeg
format. I made a simple change to cover other extension types.
- **Description:** The Qianfan SDK offers multiple authentication
methods, but in the `QianfanEndpoint` of Langchain, it currently only
supports authentication through AK and SK. In order to accommodate users
who wish to use alternative authentication methods, this pull request
makes AK and SK optional. This change should not impact existing users,
while allowing users to configure other authentication methods as per
the Qianfan SDK documentation.
- **Issue:** /
- **Dependencies:** No
- **Tag maintainer:** No
- **Twitter handle:**
Added Entry ID as a return value inside get_summaries_as_docs
- **Description:** Added the Entry ID as a return, so it's easier to
track the IDs of the papers that are being returned.
With the addition return of the entry ID in functions like
ArxivRetriever, it will be easier to reference the ID of the paper
itself.
- **Description:** Going forward, we have a own API `pip install
gradientai`. Therefore gradually removing the self-build packages in
llamaindex, haystack and langchain.
- **Issue:** None.
- **Dependencies:** `pip install gradientai`
- **Tag maintainer:** @michaelfeil
Very simple change in relation to the issue
https://github.com/langchain-ai/langchain/issues/14550
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Added logic for re-calling the YandexGPT API in case of
an error
---------
Co-authored-by: Dmitry Tyumentsev <dmitry.tyumentsev@raftds.com>
Description: A new vector store Jaguar is being added. Class, test
scripts, and documentation is added.
Issue: None -- This is the first PR contributing to LangChain
Dependencies: This depends on "pip install -U jaguardb-http-client"
client http package
Tag maintainer: @baskaryan, @eyurtsev, @hwchase1
Twitter handle: @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Addded missed docstrings. Fixed inconsistency in docstrings.
**Note** CC @efriis
There were PR errors on
`langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py`
But, I didn't touch this file in this PR! Can it be some cache problems?
I fixed this error.
- **Description:** added support for chat_history for Google
GenerativeAI (to actually use the `chat` API) plus since Gemini
currently doesn't have a support for SystemMessage, added support for it
only if a user provides additional `convert_system_message_to_human`
flag during model initialization (in this case, SystemMessage would be
prepanded to the first HumanMessage)
- **Issue:** #14710
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** lkuligin
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
- **Description:** This is addition to [my previous
PR](https://github.com/langchain-ai/langchain/pull/13930) with
improvements to flexibility allowing different models and notebook to
use ONNX runtime for faster speed. Since the last PR, [our
model](https://huggingface.co/laiyer/deberta-v3-base-prompt-injection)
got more than 660k downloads, and with the [public
benchmark](https://huggingface.co/spaces/laiyer/prompt-injection-benchmark)
showed much fewer false-positives than the previous one from deepset.
Additionally, on the ONNX runtime, it can be running 3x faster on the
CPU, which might be handy for builders using Langchain.
**Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** N/A
- **Twitter handle:** `@laiyer_ai`
Fixing issue - https://github.com/langchain-ai/langchain/issues/14494 to
avoid Kendra query ValidationException
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Update kendra.py to avoid Kendra query
ValidationException,
- **Issue:** the issue
#https://github.com/langchain-ai/langchain/issues/14494,
- **Dependencies:** None,
- **Tag maintainer:** ,
- **Twitter handle:**
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:**
- Add a break case to `text_splitter.py::split_text_on_tokens()` to
avoid unwanted item at the end of result.
- Add a testcase to enforce the behavior.
- **Issue:**
- #14649
- #5897
- **Dependencies:** n/a,
---
**Quick illustration of change:**
```
text = "foo bar baz 123"
tokenizer = Tokenizer(
chunk_overlap=3,
tokens_per_chunk=7
)
output = split_text_on_tokens(text=text, tokenizer=tokenizer)
```
output before change: `["foo bar", "bar baz", "baz 123", "123"]`
output after change: `["foo bar", "bar baz", "baz 123"]`
This is technically a breaking change because it'll switch out default
models from `text-davinci-003` to `gpt-3.5-turbo-instruct`, but OpenAI
is shutting off those endpoints on 1/4 anyways.
Feels less disruptive to switch out the default instead.
Gpt-3.5 sometimes calls with empty string arguments instead of `{}`
I'd assume it's because the typescript representation on their backend
makes it a bit ambiguous.
- **Description:** VertexAIEmbeddings performance improvements
- **Twitter handle:** @vladkol
## Improvements
- Dynamic batch size, starting from 250, lowering down to 5. Batch size
varies across regions.
Some regions support larger batches, and it significantly improves
performance.
When running large batches of texts in `us-central1`, performance gain
can be up to 3.5x.
The dynamic batching also makes sure every batch is below 20K token
limit.
- New model parameter `embeddings_type` that translates to `task_type`
parameter of the API. Newer model versions support [different embeddings
task
types](https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings#api_changes_to_models_released_on_or_after_august_2023).
Now that it's supported again for OAI chat models .
Shame this wouldn't include it in the `.invoke()` output though (it's
not included in the message itself). Would need to do a follow-up for
that to be the case
Fixed:
- `_agenerate` return value in the YandexGPT Chat Model
- duplicate line in the documentation
Co-authored-by: Dmitry Tyumentsev <dmitry.tyumentsev@raftds.com>
Builds out a developer documentation section in the docs
- Links it from contributing.md
- Adds an initial guide on how to contribute an integration
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds the option for `similarity_score_threshold` when using
`MongoDBAtlasVectorSearch` as a vector store retriever.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa_retriever = vector_search.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
"score_threshold": 0.5,
}
)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=qa_retriever,
)
docs = qa({"query": "..."})
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
… (#14723)
- **Description:** Minor updates per marketing requests. Namely, name
decisions (AI Foundation Models / AI Playground)
- **Tag maintainer:** @hinthornw
Do want to pass around the PR for a bit and ask a few more marketing
questions before merge, but just want to make sure I'm not working in a
vacuum. No major changes to code functionality intended; the PR should
be for documentation and only minor tweaks.
Note: QA model is a bit borked across staging/prod right now. Relevant
teams have been informed and are looking into it, and I'm placeholdered
the response to that of a working version in the notebook.
Co-authored-by: Vadim Kudlay <32310964+VKudlay@users.noreply.github.com>
Replace this entire comment with:
- **Description:** added support for new Google GenerativeAI models
- **Twitter handle:** lkuligin
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Description: Added NVIDIA AI Playground Initial support for a selection of models (Llama models, Mistral, etc.)
Dependencies: These models do depend on the AI Playground services in NVIDIA NGC. API keys with a significant amount of trial compute are available (10K queries as of the time of writing).
H/t to @VKudlay
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: fangkeke <3339698829@qq.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>