Fetch runnable config from context var inside runnable lambda and runnable generator (#15334)

- easier to write custom logic/loops with automatic tracing
- if you don't want to streaming support write a regular function and
pass to RunnableLambda
- if you do want streaming write a generator and pass it to
RunnableGenerator

```py
import json
from typing import AsyncIterator

from langchain_core.messages import BaseMessage, FunctionMessage, HumanMessage
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import Runnable, RunnableGenerator, RunnablePassthrough
from langchain_core.tools import BaseTool

from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.tools.render import format_tool_to_openai_function


def _get_tavily():
    from langchain.tools.tavily_search import TavilySearchResults
    from langchain.utilities.tavily_search import TavilySearchAPIWrapper

    tavily_search = TavilySearchAPIWrapper()
    return TavilySearchResults(api_wrapper=tavily_search)


async def _agent_executor_generator(
    input: AsyncIterator[list[BaseMessage]],
    *,
    max_iterations: int = 10,
    tools: dict[str, BaseTool],
    agent: Runnable[list[BaseMessage], BaseMessage],
    parser: Runnable[BaseMessage, AgentAction | AgentFinish],
) -> AsyncIterator[BaseMessage]:
    messages = [m async for mm in input for m in mm]
    for _ in range(max_iterations):
        next_message = await agent.ainvoke(messages)
        yield next_message
        messages.append(next_message)

        parsed = await parser.ainvoke(next_message)
        if isinstance(parsed, AgentAction):
            result = await tools[parsed.tool].ainvoke(parsed.tool_input)
            next_message = FunctionMessage(name=parsed.tool, content=json.dumps(result))
            yield next_message
            messages.append(next_message)
        elif isinstance(parsed, AgentFinish):
            return


def get_agent_executor(tools: list[BaseTool], system_message: str):
    llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0, streaming=True)
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_message),
            MessagesPlaceholder(variable_name="messages"),
        ]
    )
    llm_with_tools = llm.bind(
        functions=[format_tool_to_openai_function(t) for t in tools]
    )

    agent = {"messages": RunnablePassthrough()} | prompt | llm_with_tools
    parser = OpenAIFunctionsAgentOutputParser()
    executor = RunnableGenerator(_agent_executor_generator)
    return executor.bind(
        tools={tool.name for tool in tools}, agent=agent, parser=parser
    )


agent = get_agent_executor([_get_tavily()], "You are a very nice agent!")


async def main():
    async for message in agent.astream(
        [HumanMessage(content="whats the weather in sf tomorrow?")]
    ):
        print(message)


if __name__ == "__main__":
    import asyncio

    asyncio.run(main())
```

results in this trace
https://smith.langchain.com/public/fa17f05d-9724-4d08-8fa1-750f8fcd051b/r
This commit is contained in:
Nuno Campos 2024-01-02 12:16:39 -08:00 committed by GitHub
parent 8e0d5813c2
commit 9cbf14dec2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 656 additions and 94 deletions

View File

@ -23,6 +23,7 @@ from langchain_core.runnables.base import (
RunnableParallel,
RunnableSequence,
RunnableSerializable,
chain,
)
from langchain_core.runnables.branch import RunnableBranch
from langchain_core.runnables.config import (
@ -50,6 +51,7 @@ from langchain_core.runnables.utils import (
)
__all__ = [
"chain",
"AddableDict",
"ConfigurableField",
"ConfigurableFieldSingleOption",

View File

@ -1,10 +1,12 @@
from __future__ import annotations
import asyncio
import collections
import inspect
import threading
from abc import ABC, abstractmethod
from concurrent.futures import FIRST_COMPLETED, wait
from contextvars import copy_context
from copy import deepcopy
from functools import wraps
from itertools import groupby, tee
@ -15,6 +17,7 @@ from typing import (
AsyncIterator,
Awaitable,
Callable,
Coroutine,
Dict,
Generic,
Iterator,
@ -48,6 +51,7 @@ from langchain_core.runnables.config import (
merge_configs,
patch_config,
run_in_executor,
var_child_runnable_config,
)
from langchain_core.runnables.graph import Graph
from langchain_core.runnables.utils import (
@ -58,6 +62,7 @@ from langchain_core.runnables.utils import (
Input,
Output,
accepts_config,
accepts_context,
accepts_run_manager,
gather_with_concurrency,
get_function_first_arg_dict_keys,
@ -950,8 +955,19 @@ class Runnable(Generic[Input, Output], ABC):
name=config.get("run_name") or self.get_name(),
)
try:
output = call_func_with_variable_args(
func, input, config, run_manager, **kwargs
child_config = patch_config(config, callbacks=run_manager.get_child())
context = copy_context()
context.run(var_child_runnable_config.set, child_config)
output = cast(
Output,
context.run(
call_func_with_variable_args,
func, # type: ignore[arg-type]
input, # type: ignore[arg-type]
config,
run_manager,
**kwargs,
),
)
except BaseException as e:
run_manager.on_chain_error(e)
@ -986,9 +1002,16 @@ class Runnable(Generic[Input, Output], ABC):
name=config.get("run_name") or self.get_name(),
)
try:
output = await acall_func_with_variable_args(
child_config = patch_config(config, callbacks=run_manager.get_child())
context = copy_context()
context.run(var_child_runnable_config.set, child_config)
coro = acall_func_with_variable_args(
func, input, config, run_manager, **kwargs
)
if accepts_context(asyncio.create_task):
output: Output = await asyncio.create_task(coro, context=context) # type: ignore
else:
output = await coro
except BaseException as e:
await run_manager.on_chain_error(e)
raise
@ -1178,24 +1201,29 @@ class Runnable(Generic[Input, Output], ABC):
name=config.get("run_name") or self.get_name(),
)
try:
child_config = patch_config(config, callbacks=run_manager.get_child())
if accepts_config(transformer):
kwargs["config"] = patch_config(
config, callbacks=run_manager.get_child()
)
kwargs["config"] = child_config
if accepts_run_manager(transformer):
kwargs["run_manager"] = run_manager
iterator = transformer(input_for_transform, **kwargs) # type: ignore[call-arg]
for chunk in iterator:
yield chunk
if final_output_supported:
if final_output is None:
final_output = chunk
else:
try:
final_output = final_output + chunk # type: ignore
except TypeError:
final_output = None
final_output_supported = False
context = copy_context()
context.run(var_child_runnable_config.set, child_config)
iterator = context.run(transformer, input_for_transform, **kwargs) # type: ignore[arg-type]
try:
while True:
chunk: Output = context.run(next, iterator) # type: ignore
yield chunk
if final_output_supported:
if final_output is None:
final_output = chunk
else:
try:
final_output = final_output + chunk # type: ignore
except TypeError:
final_output = None
final_output_supported = False
except StopIteration:
pass
for ichunk in input_for_tracing:
if final_input_supported:
if final_input is None:
@ -1254,24 +1282,35 @@ class Runnable(Generic[Input, Output], ABC):
name=config.get("run_name") or self.get_name(),
)
try:
child_config = patch_config(config, callbacks=run_manager.get_child())
if accepts_config(transformer):
kwargs["config"] = patch_config(
config, callbacks=run_manager.get_child()
)
kwargs["config"] = child_config
if accepts_run_manager(transformer):
kwargs["run_manager"] = run_manager
iterator = transformer(input_for_transform, **kwargs) # type: ignore[call-arg]
async for chunk in iterator:
yield chunk
if final_output_supported:
if final_output is None:
final_output = chunk
context = copy_context()
context.run(var_child_runnable_config.set, child_config)
iterator = context.run(transformer, input_for_transform, **kwargs) # type: ignore[arg-type]
try:
while True:
if accepts_context(asyncio.create_task):
chunk: Output = await asyncio.create_task( # type: ignore[call-arg]
py_anext(iterator), # type: ignore[arg-type]
context=context,
)
else:
try:
final_output = final_output + chunk # type: ignore
except TypeError:
final_output = None
final_output_supported = False
chunk = cast(Output, await py_anext(iterator))
yield chunk
if final_output_supported:
if final_output is None:
final_output = chunk
else:
try:
final_output = final_output + chunk # type: ignore
except TypeError:
final_output = None
final_output_supported = False
except StopAsyncIteration:
pass
async for ichunk in input_for_tracing:
if final_input_supported:
if final_input is None:
@ -1472,7 +1511,7 @@ class RunnableSequence(RunnableSerializable[Input, Output]):
.. code-block:: python
from langchain_core.output_parsers.json import SimpleJsonOutputParser
from langchain_core.chat_models.openai import ChatOpenAI
from langchain.chat_models.openai import ChatOpenAI
prompt = PromptTemplate.from_template(
'In JSON format, give me a list of {topic} and their '
@ -2482,17 +2521,25 @@ class RunnableGenerator(Runnable[Input, Output]):
) -> None:
if atransform is not None:
self._atransform = atransform
func_for_name: Callable = atransform
if inspect.isasyncgenfunction(transform):
self._atransform = transform
func_for_name = transform
elif inspect.isgeneratorfunction(transform):
self._transform = transform
func_for_name = transform
else:
raise TypeError(
"Expected a generator function type for `transform`."
f"Instead got an unsupported type: {type(transform)}"
)
try:
self.name = func_for_name.__name__
except AttributeError:
pass
@property
def InputType(self) -> Any:
func = getattr(self, "_transform", None) or getattr(self, "_atransform")
@ -2646,12 +2693,14 @@ class RunnableLambda(Runnable[Input, Output]):
func: Union[
Union[
Callable[[Input], Output],
Callable[[Input], Iterator[Output]],
Callable[[Input, RunnableConfig], Output],
Callable[[Input, CallbackManagerForChainRun], Output],
Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output],
],
Union[
Callable[[Input], Awaitable[Output]],
Callable[[Input], AsyncIterator[Output]],
Callable[[Input, RunnableConfig], Awaitable[Output]],
Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]],
Callable[
@ -2663,6 +2712,7 @@ class RunnableLambda(Runnable[Input, Output]):
afunc: Optional[
Union[
Callable[[Input], Awaitable[Output]],
Callable[[Input], AsyncIterator[Output]],
Callable[[Input, RunnableConfig], Awaitable[Output]],
Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]],
Callable[
@ -2685,7 +2735,7 @@ class RunnableLambda(Runnable[Input, Output]):
self.afunc = afunc
func_for_name: Callable = afunc
if inspect.iscoroutinefunction(func):
if inspect.iscoroutinefunction(func) or inspect.isasyncgenfunction(func):
if afunc is not None:
raise TypeError(
"Func was provided as a coroutine function, but afunc was "
@ -2767,11 +2817,16 @@ class RunnableLambda(Runnable[Input, Output]):
func = getattr(self, "func", None) or getattr(self, "afunc")
try:
sig = inspect.signature(func)
return (
sig.return_annotation
if sig.return_annotation != inspect.Signature.empty
else Any
)
if sig.return_annotation != inspect.Signature.empty:
# unwrap iterator types
if getattr(sig.return_annotation, "__origin__", None) in (
collections.abc.Iterator,
collections.abc.AsyncIterator,
):
return getattr(sig.return_annotation, "__args__", (Any,))[0]
return sig.return_annotation
else:
return Any
except ValueError:
return Any
@ -2848,9 +2903,26 @@ class RunnableLambda(Runnable[Input, Output]):
config: RunnableConfig,
**kwargs: Any,
) -> Output:
output = call_func_with_variable_args(
self.func, input, config, run_manager, **kwargs
)
if inspect.isgeneratorfunction(self.func):
output: Optional[Output] = None
for chunk in call_func_with_variable_args(
cast(Callable[[Input], Iterator[Output]], self.func),
input,
config,
run_manager,
**kwargs,
):
if output is None:
output = chunk
else:
try:
output = output + chunk # type: ignore[operator]
except TypeError:
output = chunk
else:
output = call_func_with_variable_args(
self.func, input, config, run_manager, **kwargs
)
# If the output is a runnable, invoke it
if isinstance(output, Runnable):
recursion_limit = config["recursion_limit"]
@ -2866,7 +2938,7 @@ class RunnableLambda(Runnable[Input, Output]):
recursion_limit=recursion_limit - 1,
),
)
return output
return cast(Output, output)
async def _ainvoke(
self,
@ -2878,16 +2950,69 @@ class RunnableLambda(Runnable[Input, Output]):
if hasattr(self, "afunc"):
afunc = self.afunc
else:
if inspect.isgeneratorfunction(self.func):
@wraps(self.func)
def func(
input: Input,
run_manager: AsyncCallbackManagerForChainRun,
config: RunnableConfig,
) -> Output:
output: Optional[Output] = None
for chunk in call_func_with_variable_args(
cast(Callable[[Input], Iterator[Output]], self.func),
input,
config,
run_manager.get_sync(),
**kwargs,
):
if output is None:
output = chunk
else:
try:
output = output + chunk # type: ignore[operator]
except TypeError:
output = chunk
return cast(Output, output)
else:
def func(
input: Input,
run_manager: AsyncCallbackManagerForChainRun,
config: RunnableConfig,
) -> Output:
return call_func_with_variable_args(
self.func, input, config, run_manager.get_sync(), **kwargs
)
@wraps(func)
async def f(*args, **kwargs): # type: ignore[no-untyped-def]
return await run_in_executor(config, self.func, *args, **kwargs)
return await run_in_executor(config, func, *args, **kwargs)
afunc = f
output = await acall_func_with_variable_args(
afunc, input, config, run_manager, **kwargs
)
if inspect.isasyncgenfunction(afunc):
output: Optional[Output] = None
async for chunk in cast(
AsyncIterator[Output],
acall_func_with_variable_args(
cast(Callable, afunc),
input,
config,
run_manager,
**kwargs,
),
):
if output is None:
output = chunk
else:
try:
output = output + chunk # type: ignore[operator]
except TypeError:
output = chunk
else:
output = await acall_func_with_variable_args(
cast(Callable, afunc), input, config, run_manager, **kwargs
)
# If the output is a runnable, invoke it
if isinstance(output, Runnable):
recursion_limit = config["recursion_limit"]
@ -2903,7 +3028,7 @@ class RunnableLambda(Runnable[Input, Output]):
recursion_limit=recursion_limit - 1,
),
)
return output
return cast(Output, output)
def _config(
self, config: Optional[RunnableConfig], callable: Callable[..., Any]
@ -2972,9 +3097,23 @@ class RunnableLambda(Runnable[Input, Output]):
except TypeError:
final = ichunk
output = call_func_with_variable_args(
self.func, cast(Input, final), config, run_manager, **kwargs
)
if inspect.isgeneratorfunction(self.func):
output: Optional[Output] = None
for chunk in call_func_with_variable_args(
self.func, cast(Input, final), config, run_manager, **kwargs
):
yield chunk
if output is None:
output = chunk
else:
try:
output = output + chunk
except TypeError:
output = chunk
else:
output = call_func_with_variable_args(
self.func, cast(Input, final), config, run_manager, **kwargs
)
# If the output is a runnable, use its stream output
if isinstance(output, Runnable):
@ -2993,9 +3132,9 @@ class RunnableLambda(Runnable[Input, Output]):
),
):
yield chunk
else:
elif not inspect.isgeneratorfunction(self.func):
# Otherwise, just yield it
yield output
yield cast(Output, output)
def transform(
self,
@ -3030,6 +3169,7 @@ class RunnableLambda(Runnable[Input, Output]):
input: AsyncIterator[Input],
run_manager: AsyncCallbackManagerForChainRun,
config: RunnableConfig,
**kwargs: Any,
) -> AsyncIterator[Output]:
final: Optional[Input] = None
async for ichunk in input:
@ -3044,16 +3184,51 @@ class RunnableLambda(Runnable[Input, Output]):
if hasattr(self, "afunc"):
afunc = self.afunc
else:
if inspect.isgeneratorfunction(self.func):
raise TypeError(
"Cannot stream from a generator function asynchronously."
"Use .stream() instead."
)
@wraps(self.func)
def func(
input: Input,
run_manager: AsyncCallbackManagerForChainRun,
config: RunnableConfig,
) -> Output:
return call_func_with_variable_args(
self.func, input, config, run_manager.get_sync(), **kwargs
)
@wraps(func)
async def f(*args, **kwargs): # type: ignore[no-untyped-def]
return await run_in_executor(config, self.func, *args, **kwargs)
return await run_in_executor(config, func, *args, **kwargs)
afunc = f
output = await acall_func_with_variable_args(
afunc, cast(Input, final), config, run_manager
)
if inspect.isasyncgenfunction(afunc):
output: Optional[Output] = None
async for chunk in cast(
AsyncIterator[Output],
acall_func_with_variable_args(
cast(Callable, afunc),
cast(Input, final),
config,
run_manager,
**kwargs,
),
):
yield chunk
if output is None:
output = chunk
else:
try:
output = output + chunk # type: ignore[operator]
except TypeError:
output = chunk
else:
output = await acall_func_with_variable_args(
cast(Callable, afunc), cast(Input, final), config, run_manager, **kwargs
)
# If the output is a runnable, use its astream output
if isinstance(output, Runnable):
@ -3072,9 +3247,9 @@ class RunnableLambda(Runnable[Input, Output]):
),
):
yield chunk
else:
elif not inspect.isasyncgenfunction(afunc):
# Otherwise, just yield it
yield output
yield cast(Output, output)
async def atransform(
self,
@ -3699,3 +3874,69 @@ def coerce_to_runnable(thing: RunnableLike) -> Runnable[Input, Output]:
f"Expected a Runnable, callable or dict."
f"Instead got an unsupported type: {type(thing)}"
)
@overload
def chain(
func: Callable[[Input], Coroutine[Any, Any, Output]],
) -> Runnable[Input, Output]:
...
@overload
def chain(
func: Callable[[Input], Iterator[Output]],
) -> Runnable[Input, Output]:
...
@overload
def chain(
func: Callable[[Input], AsyncIterator[Output]],
) -> Runnable[Input, Output]:
...
@overload
def chain(
func: Callable[[Input], Output],
) -> Runnable[Input, Output]:
...
def chain(
func: Union[
Callable[[Input], Output],
Callable[[Input], Iterator[Output]],
Callable[[Input], Coroutine[Any, Any, Output]],
Callable[[Input], AsyncIterator[Output]],
],
) -> Runnable[Input, Output]:
"""Decorate a function to make it a Runnable.
Sets the name of the runnable to the name of the function.
Any runnables called by the function will be traced as dependencies.
Args:
func: A callable.
Returns:
A Runnable.
Example:
.. code-block:: python
from langchain_core.runnables import chain
from langchain_core.prompts import PromptTemplate
from langchain.llms import OpenAI
@chain
def my_func(fields):
prompt = PromptTemplate("Hello, {name}!")
llm = OpenAI()
formatted = prompt.invoke(**fields)
for chunk in llm.stream(formatted):
yield chunk
"""
return RunnableLambda(func)

View File

@ -323,7 +323,7 @@ def call_func_with_variable_args(
return func(input, **kwargs) # type: ignore[call-arg]
async def acall_func_with_variable_args(
def acall_func_with_variable_args(
func: Union[
Callable[[Input], Awaitable[Output]],
Callable[[Input, RunnableConfig], Awaitable[Output]],
@ -337,7 +337,7 @@ async def acall_func_with_variable_args(
config: RunnableConfig,
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
**kwargs: Any,
) -> Output:
) -> Awaitable[Output]:
"""Call function that may optionally accept a run_manager and/or config.
Args:
@ -361,7 +361,7 @@ async def acall_func_with_variable_args(
kwargs["config"] = config
if run_manager is not None and accepts_run_manager(func):
kwargs["run_manager"] = run_manager
return await func(input, **kwargs) # type: ignore[call-arg]
return func(input, **kwargs) # type: ignore[call-arg]
def get_callback_manager_for_config(config: RunnableConfig) -> CallbackManager:

View File

@ -68,6 +68,14 @@ def accepts_config(callable: Callable[..., Any]) -> bool:
return False
def accepts_context(callable: Callable[..., Any]) -> bool:
"""Check if a callable accepts a context argument."""
try:
return signature(callable).parameters.get("context") is not None
except ValueError:
return False
class IsLocalDict(ast.NodeVisitor):
"""Check if a name is a local dict."""

View File

@ -12,7 +12,7 @@ from langchain_core.runnables.utils import aadd, add
from tests.unit_tests.fake.llm import FakeListLLM, FakeStreamingListLLM
class TestCase(NamedTuple):
class _TestCase(NamedTuple):
input: Any
output: Any
@ -102,22 +102,22 @@ test_cases = [
(
Context.setter("foo") | Context.getter("foo"),
(
TestCase("foo", "foo"),
TestCase("bar", "bar"),
_TestCase("foo", "foo"),
_TestCase("bar", "bar"),
),
),
(
Context.setter("input") | {"bar": Context.getter("input")},
(
TestCase("foo", {"bar": "foo"}),
TestCase("bar", {"bar": "bar"}),
_TestCase("foo", {"bar": "foo"}),
_TestCase("bar", {"bar": "bar"}),
),
),
(
{"bar": Context.setter("input")} | Context.getter("input"),
(
TestCase("foo", "foo"),
TestCase("bar", "bar"),
_TestCase("foo", "foo"),
_TestCase("bar", "bar"),
),
),
(
@ -132,11 +132,11 @@ test_cases = [
}
),
(
TestCase(
_TestCase(
{"foo": "foo", "bar": "bar"},
{"response": "hello", "prompt": StringPromptValue(text="foo bar")},
),
TestCase(
_TestCase(
{"foo": "bar", "bar": "foo"},
{"response": "hello", "prompt": StringPromptValue(text="bar foo")},
),
@ -155,7 +155,7 @@ test_cases = [
}
),
(
TestCase(
_TestCase(
{"foo": "foo", "bar": "bar"},
{
"response": "hello",
@ -163,7 +163,7 @@ test_cases = [
"prompt_str": "foo bar",
},
),
TestCase(
_TestCase(
{"foo": "bar", "bar": "foo"},
{
"response": "hello",
@ -185,11 +185,11 @@ test_cases = [
}
),
(
TestCase(
_TestCase(
{"foo": "foo", "bar": "bar"},
{"response": "hello", "prompt_str": "foo bar"},
),
TestCase(
_TestCase(
{"foo": "bar", "bar": "foo"},
{"response": "hello", "prompt_str": "bar foo"},
),
@ -207,11 +207,11 @@ test_cases = [
}
),
(
TestCase(
_TestCase(
{"foo": "foo", "bar": "bar"},
{"response": "hello", "prompt_str": "foo bar"},
),
TestCase(
_TestCase(
{"foo": "bar", "bar": "foo"},
{"response": "hello", "prompt_str": "bar foo"},
),
@ -229,11 +229,11 @@ test_cases = [
}
),
(
TestCase(
_TestCase(
{"foo": "foo", "bar": "bar"},
{"response": "hello", "prompt": StringPromptValue(text="foo bar")},
),
TestCase(
_TestCase(
{"foo": "bar", "bar": "foo"},
{"response": "hello", "prompt": StringPromptValue(text="bar foo")},
),
@ -242,7 +242,7 @@ test_cases = [
(
seq_naive_rag,
(
TestCase(
_TestCase(
"What up",
{
"result": "hello",
@ -254,7 +254,7 @@ test_cases = [
"input": "What up",
},
),
TestCase(
_TestCase(
"Howdy",
{
"result": "hello",
@ -271,7 +271,7 @@ test_cases = [
(
seq_naive_rag_alt,
(
TestCase(
_TestCase(
"What up",
{
"result": "hello",
@ -283,7 +283,7 @@ test_cases = [
"input": "What up",
},
),
TestCase(
_TestCase(
"Howdy",
{
"result": "hello",
@ -300,7 +300,7 @@ test_cases = [
(
seq_naive_rag_scoped,
(
TestCase(
_TestCase(
"What up",
{
"result": "hello",
@ -312,7 +312,7 @@ test_cases = [
"input": "What up",
},
),
TestCase(
_TestCase(
"Howdy",
{
"result": "hello",
@ -331,7 +331,7 @@ test_cases = [
@pytest.mark.parametrize("runnable, cases", test_cases)
async def test_context_runnables(
runnable: Union[Runnable, Callable[[], Runnable]], cases: List[TestCase]
runnable: Union[Runnable, Callable[[], Runnable]], cases: List[_TestCase]
) -> None:
runnable = runnable if isinstance(runnable, Runnable) else runnable()
assert runnable.invoke(cases[0].input) == cases[0].output

View File

@ -1,6 +1,7 @@
from langchain_core.runnables import __all__
EXPECTED_ALL = [
"chain",
"AddableDict",
"ConfigurableField",
"ConfigurableFieldSingleOption",

View File

@ -68,6 +68,7 @@ from langchain_core.runnables import (
RunnableSequence,
RunnableWithFallbacks,
add,
chain,
)
from langchain_core.tools import BaseTool, tool
from langchain_core.tracers import (
@ -4388,9 +4389,9 @@ async def test_runnable_gen() -> None:
runnable = RunnableGenerator(gen)
assert runnable.input_schema.schema() == {"title": "RunnableGeneratorInput"}
assert runnable.input_schema.schema() == {"title": "gen_input"}
assert runnable.output_schema.schema() == {
"title": "RunnableGeneratorOutput",
"title": "gen_output",
"type": "integer",
}
@ -4410,6 +4411,315 @@ async def test_runnable_gen() -> None:
assert await arunnable.abatch([None, None]) == [6, 6]
async def test_runnable_gen_context_config() -> None:
"""Test that a generator can call other runnables with config
propagated from the context."""
fake = RunnableLambda(len)
def gen(input: Iterator[Any]) -> Iterator[int]:
yield fake.invoke("a")
yield fake.invoke("aa")
yield fake.invoke("aaa")
runnable = RunnableGenerator(gen)
assert runnable.input_schema.schema() == {"title": "gen_input"}
assert runnable.output_schema.schema() == {
"title": "gen_output",
"type": "integer",
}
tracer = FakeTracer()
assert runnable.invoke(None, {"callbacks": [tracer]}) == 6
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer.runs.clear()
assert list(runnable.stream(None)) == [1, 2, 3]
assert len(tracer.runs) == 0, "callbacks doesn't persist from previous call"
tracer = FakeTracer()
assert list(runnable.stream(None, {"callbacks": [tracer]})) == [1, 2, 3]
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer = FakeTracer()
assert runnable.batch([None, None], {"callbacks": [tracer]}) == [6, 6]
assert len(tracer.runs) == 2
assert tracer.runs[0].outputs == {"output": 6}
assert tracer.runs[1].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
assert len(tracer.runs[1].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[1].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[1].child_runs] == [1, 2, 3]
if sys.version_info < (3, 11):
# Python 3.10 and below don't support running async tasks in a specific context
return
async def agen(input: AsyncIterator[Any]) -> AsyncIterator[int]:
yield await fake.ainvoke("a")
yield await fake.ainvoke("aa")
yield await fake.ainvoke("aaa")
arunnable = RunnableGenerator(agen)
tracer = FakeTracer()
assert await arunnable.ainvoke(None, {"callbacks": [tracer]}) == 6
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer.runs.clear()
assert [p async for p in arunnable.astream(None)] == [1, 2, 3]
assert len(tracer.runs) == 0, "callbacks doesn't persist from previous call"
tracer = FakeTracer()
assert [p async for p in arunnable.astream(None, {"callbacks": [tracer]})] == [
1,
2,
3,
]
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer = FakeTracer()
assert await arunnable.abatch([None, None], {"callbacks": [tracer]}) == [6, 6]
assert len(tracer.runs) == 2
assert tracer.runs[0].outputs == {"output": 6}
assert tracer.runs[1].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
assert len(tracer.runs[1].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[1].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[1].child_runs] == [1, 2, 3]
async def test_runnable_iter_context_config() -> None:
"""Test that a generator can call other runnables with config
propagated from the context."""
fake = RunnableLambda(len)
@chain
def gen(input: str) -> Iterator[int]:
yield fake.invoke(input)
yield fake.invoke(input * 2)
yield fake.invoke(input * 3)
assert gen.input_schema.schema() == {
"title": "gen_input",
"type": "string",
}
assert gen.output_schema.schema() == {
"title": "gen_output",
"type": "integer",
}
tracer = FakeTracer()
assert gen.invoke("a", {"callbacks": [tracer]}) == 6
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer.runs.clear()
assert list(gen.stream("a")) == [1, 2, 3]
assert len(tracer.runs) == 0, "callbacks doesn't persist from previous call"
tracer = FakeTracer()
assert list(gen.stream("a", {"callbacks": [tracer]})) == [1, 2, 3]
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer = FakeTracer()
assert gen.batch(["a", "a"], {"callbacks": [tracer]}) == [6, 6]
assert len(tracer.runs) == 2
assert tracer.runs[0].outputs == {"output": 6}
assert tracer.runs[1].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
assert len(tracer.runs[1].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[1].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[1].child_runs] == [1, 2, 3]
if sys.version_info < (3, 11):
# Python 3.10 and below don't support running async tasks in a specific context
return
@chain
async def agen(input: str) -> AsyncIterator[int]:
yield await fake.ainvoke(input)
yield await fake.ainvoke(input * 2)
yield await fake.ainvoke(input * 3)
assert agen.input_schema.schema() == {
"title": "agen_input",
"type": "string",
}
assert agen.output_schema.schema() == {
"title": "agen_output",
"type": "integer",
}
tracer = FakeTracer()
assert await agen.ainvoke("a", {"callbacks": [tracer]}) == 6
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer.runs.clear()
assert [p async for p in agen.astream("a")] == [1, 2, 3]
assert len(tracer.runs) == 0, "callbacks doesn't persist from previous call"
tracer = FakeTracer()
assert [p async for p in agen.astream("a", {"callbacks": [tracer]})] == [
1,
2,
3,
]
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer = FakeTracer()
assert await agen.abatch(["a", "a"], {"callbacks": [tracer]}) == [6, 6]
assert len(tracer.runs) == 2
assert tracer.runs[0].outputs == {"output": 6}
assert tracer.runs[1].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
assert len(tracer.runs[1].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[1].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[1].child_runs] == [1, 2, 3]
async def test_runnable_lambda_context_config() -> None:
"""Test that a function can call other runnables with config
propagated from the context."""
fake = RunnableLambda(len)
@chain
def fun(input: str) -> int:
output = fake.invoke(input)
output += fake.invoke(input * 2)
output += fake.invoke(input * 3)
return output
assert fun.input_schema.schema() == {"title": "fun_input", "type": "string"}
assert fun.output_schema.schema() == {
"title": "fun_output",
"type": "integer",
}
tracer = FakeTracer()
assert fun.invoke("a", {"callbacks": [tracer]}) == 6
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer.runs.clear()
assert list(fun.stream("a")) == [6]
assert len(tracer.runs) == 0, "callbacks doesn't persist from previous call"
tracer = FakeTracer()
assert list(fun.stream("a", {"callbacks": [tracer]})) == [6]
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer = FakeTracer()
assert fun.batch(["a", "a"], {"callbacks": [tracer]}) == [6, 6]
assert len(tracer.runs) == 2
assert tracer.runs[0].outputs == {"output": 6}
assert tracer.runs[1].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
assert len(tracer.runs[1].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[1].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[1].child_runs] == [1, 2, 3]
if sys.version_info < (3, 11):
# Python 3.10 and below don't support running async tasks in a specific context
return
@chain
async def afun(input: str) -> int:
output = await fake.ainvoke(input)
output += await fake.ainvoke(input * 2)
output += await fake.ainvoke(input * 3)
return output
assert afun.input_schema.schema() == {"title": "afun_input", "type": "string"}
assert afun.output_schema.schema() == {
"title": "afun_output",
"type": "integer",
}
tracer = FakeTracer()
assert await afun.ainvoke("a", {"callbacks": [tracer]}) == 6
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer.runs.clear()
assert [p async for p in afun.astream("a")] == [6]
assert len(tracer.runs) == 0, "callbacks doesn't persist from previous call"
tracer = FakeTracer()
assert [p async for p in afun.astream("a", {"callbacks": [tracer]})] == [6]
assert len(tracer.runs) == 1
assert tracer.runs[0].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
tracer = FakeTracer()
assert await afun.abatch(["a", "a"], {"callbacks": [tracer]}) == [6, 6]
assert len(tracer.runs) == 2
assert tracer.runs[0].outputs == {"output": 6}
assert tracer.runs[1].outputs == {"output": 6}
assert len(tracer.runs[0].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[0].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[0].child_runs] == [1, 2, 3]
assert len(tracer.runs[1].child_runs) == 3
assert [r.inputs["input"] for r in tracer.runs[1].child_runs] == ["a", "aa", "aaa"]
assert [(r.outputs or {})["output"] for r in tracer.runs[1].child_runs] == [1, 2, 3]
async def test_runnable_gen_transform() -> None:
"""Test that a generator can be used as a runnable."""
@ -4434,19 +4744,19 @@ async def test_runnable_gen_transform() -> None:
achain = RunnableGenerator(gen_indexes, agen_indexes) | aplus_one
assert chain.input_schema.schema() == {
"title": "RunnableGeneratorInput",
"title": "gen_indexes_input",
"type": "integer",
}
assert chain.output_schema.schema() == {
"title": "RunnableGeneratorOutput",
"title": "plus_one_output",
"type": "integer",
}
assert achain.input_schema.schema() == {
"title": "RunnableGeneratorInput",
"title": "gen_indexes_input",
"type": "integer",
}
assert achain.output_schema.schema() == {
"title": "RunnableGeneratorOutput",
"title": "aplus_one_output",
"type": "integer",
}