mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
Implement RunnablePassthrough.pick() (#15184)
<!-- Thank you for contributing to LangChain! Please title your PR "<package>: <description>", where <package> is whichever of langchain, community, core, experimental, etc. is being modified. Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes if applicable, - **Dependencies:** any dependencies required for this change, - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` from the root of the package you've modified to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. -->
This commit is contained in:
parent
15e53a99b2
commit
8cdc633465
@ -2363,7 +2363,12 @@ class RunnableGenerator(Runnable[Input, Output]):
|
||||
return False
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "RunnableGenerator(...)"
|
||||
if hasattr(self, "_transform"):
|
||||
return f"RunnableGenerator({self._transform.__name__})"
|
||||
elif hasattr(self, "_atransform"):
|
||||
return f"RunnableGenerator({self._atransform.__name__})"
|
||||
else:
|
||||
return "RunnableGenerator(...)"
|
||||
|
||||
def transform(
|
||||
self,
|
||||
|
@ -202,6 +202,21 @@ class RunnablePassthrough(RunnableSerializable[Other, Other]):
|
||||
"""
|
||||
return RunnableAssign(RunnableParallel(kwargs))
|
||||
|
||||
@classmethod
|
||||
def pick(
|
||||
cls,
|
||||
keys: Union[str, List[str]],
|
||||
) -> "RunnablePick":
|
||||
"""Pick keys from the Dict input.
|
||||
|
||||
Args:
|
||||
keys: A string or list of strings representing the keys to pick.
|
||||
|
||||
Returns:
|
||||
A runnable that picks keys from the Dict input.
|
||||
"""
|
||||
return RunnablePick(keys)
|
||||
|
||||
def invoke(
|
||||
self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any
|
||||
) -> Other:
|
||||
@ -553,3 +568,124 @@ class RunnableAssign(RunnableSerializable[Dict[str, Any], Dict[str, Any]]):
|
||||
|
||||
async for chunk in self.atransform(input_aiter(), config, **kwargs):
|
||||
yield chunk
|
||||
|
||||
|
||||
class RunnablePick(RunnableSerializable[Dict[str, Any], Dict[str, Any]]):
|
||||
"""
|
||||
A runnable that picks keys from Dict[str, Any] inputs.
|
||||
"""
|
||||
|
||||
keys: Union[str, List[str]]
|
||||
|
||||
def __init__(self, keys: Union[str, List[str]], **kwargs: Any) -> None:
|
||||
super().__init__(keys=keys, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def get_lc_namespace(cls) -> List[str]:
|
||||
"""Get the namespace of the langchain object."""
|
||||
return ["langchain", "schema", "runnable"]
|
||||
|
||||
def _pick(self, input: Dict[str, Any]) -> Any:
|
||||
assert isinstance(
|
||||
input, dict
|
||||
), "The input to RunnablePassthrough.assign() must be a dict."
|
||||
|
||||
if isinstance(self.keys, str):
|
||||
return input.get(self.keys)
|
||||
else:
|
||||
picked = {k: input.get(k) for k in self.keys if k in input}
|
||||
if picked:
|
||||
return AddableDict(picked)
|
||||
else:
|
||||
return None
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
input: Dict[str, Any],
|
||||
) -> Dict[str, Any]:
|
||||
return self._pick(input)
|
||||
|
||||
def invoke(
|
||||
self,
|
||||
input: Dict[str, Any],
|
||||
config: Optional[RunnableConfig] = None,
|
||||
**kwargs: Any,
|
||||
) -> Dict[str, Any]:
|
||||
return self._call_with_config(self._invoke, input, config, **kwargs)
|
||||
|
||||
async def _ainvoke(
|
||||
self,
|
||||
input: Dict[str, Any],
|
||||
) -> Dict[str, Any]:
|
||||
return self._pick(input)
|
||||
|
||||
async def ainvoke(
|
||||
self,
|
||||
input: Dict[str, Any],
|
||||
config: Optional[RunnableConfig] = None,
|
||||
**kwargs: Any,
|
||||
) -> Dict[str, Any]:
|
||||
return await self._acall_with_config(self._ainvoke, input, config, **kwargs)
|
||||
|
||||
def _transform(
|
||||
self,
|
||||
input: Iterator[Dict[str, Any]],
|
||||
) -> Iterator[Dict[str, Any]]:
|
||||
for chunk in input:
|
||||
picked = self._pick(chunk)
|
||||
if picked is not None:
|
||||
yield picked
|
||||
|
||||
def transform(
|
||||
self,
|
||||
input: Iterator[Dict[str, Any]],
|
||||
config: Optional[RunnableConfig] = None,
|
||||
**kwargs: Any | None,
|
||||
) -> Iterator[Dict[str, Any]]:
|
||||
yield from self._transform_stream_with_config(
|
||||
input, self._transform, config, **kwargs
|
||||
)
|
||||
|
||||
async def _atransform(
|
||||
self,
|
||||
input: AsyncIterator[Dict[str, Any]],
|
||||
) -> AsyncIterator[Dict[str, Any]]:
|
||||
async for chunk in input:
|
||||
picked = self._pick(chunk)
|
||||
if picked is not None:
|
||||
yield picked
|
||||
|
||||
async def atransform(
|
||||
self,
|
||||
input: AsyncIterator[Dict[str, Any]],
|
||||
config: Optional[RunnableConfig] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[Dict[str, Any]]:
|
||||
async for chunk in self._atransform_stream_with_config(
|
||||
input, self._atransform, config, **kwargs
|
||||
):
|
||||
yield chunk
|
||||
|
||||
def stream(
|
||||
self,
|
||||
input: Dict[str, Any],
|
||||
config: Optional[RunnableConfig] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[Dict[str, Any]]:
|
||||
return self.transform(iter([input]), config, **kwargs)
|
||||
|
||||
async def astream(
|
||||
self,
|
||||
input: Dict[str, Any],
|
||||
config: Optional[RunnableConfig] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[Dict[str, Any]]:
|
||||
async def input_aiter() -> AsyncIterator[Dict[str, Any]]:
|
||||
yield input
|
||||
|
||||
async for chunk in self.atransform(input_aiter(), config, **kwargs):
|
||||
yield chunk
|
||||
|
@ -2764,6 +2764,41 @@ def test_map_stream() -> None:
|
||||
{"question": "What is your name?"}
|
||||
)
|
||||
|
||||
chain_pick_one = chain | RunnablePassthrough.pick("llm")
|
||||
|
||||
stream = chain_pick_one.stream({"question": "What is your name?"})
|
||||
|
||||
final_value = None
|
||||
streamed_chunks = []
|
||||
for chunk in stream:
|
||||
streamed_chunks.append(chunk)
|
||||
if final_value is None:
|
||||
final_value = chunk
|
||||
else:
|
||||
final_value += chunk
|
||||
|
||||
assert streamed_chunks[0] == "i"
|
||||
assert len(streamed_chunks) == len(llm_res)
|
||||
|
||||
chain_pick_two = chain | RunnablePassthrough.pick(["llm", "chat"])
|
||||
|
||||
stream = chain_pick_two.stream({"question": "What is your name?"})
|
||||
|
||||
final_value = None
|
||||
streamed_chunks = []
|
||||
for chunk in stream:
|
||||
streamed_chunks.append(chunk)
|
||||
if final_value is None:
|
||||
final_value = chunk
|
||||
else:
|
||||
final_value += chunk
|
||||
|
||||
assert streamed_chunks[0] in [
|
||||
{"llm": "i"},
|
||||
{"chat": AIMessageChunk(content="i")},
|
||||
]
|
||||
assert len(streamed_chunks) == len(llm_res) + len(chat_res)
|
||||
|
||||
|
||||
def test_map_stream_iterator_input() -> None:
|
||||
prompt = (
|
||||
|
Loading…
Reference in New Issue
Block a user