OpenTTD-patches/src/articulated_vehicles.cpp

394 lines
13 KiB
C++
Raw Normal View History

/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
#include "stdafx.h"
#include "train.h"
#include "roadveh.h"
#include "vehicle_func.h"
#include "engine_func.h"
#include "table/strings.h"
#include "table/sprites.h"
static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
/**
* Determines the next articulated part to attach
* @param index Position in chain
* @param front_type Front engine type
* @param front Front engine
* @param mirrored Returns whether the part shall be flipped.
* @return engine to add or INVALID_ENGINE
*/
static EngineID GetNextArticPart(uint index, EngineID front_type, Vehicle *front = NULL, bool *mirrored = NULL)
{
assert(front == NULL || front->engine_type == front_type);
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, index, 0, front_type, front);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) return INVALID_ENGINE;
if (mirrored != NULL) *mirrored = HasBit(callback, 7);
return GetNewEngineID(GetEngineGRF(front_type), Engine::Get(front_type)->type, GB(callback, 0, 7));
}
uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
{
if (!HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
/* If we can't allocate a vehicle now, we can't allocate it in the command
* either, so it doesn't matter how many articulated parts there are. */
if (!Vehicle::CanAllocateItem()) return 0;
Vehicle *v = NULL;
if (!purchase_window) {
v = new Vehicle();
v->engine_type = engine_type;
}
uint i;
for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
if (GetNextArticPart(i, engine_type, v) == INVALID_ENGINE) break;
}
delete v;
return i - 1;
}
/**
* Returns the default (non-refitted) capacity of a specific EngineID.
* @param engine the EngineID of iterest
* @param cargo_type returns the default cargo type, if needed
* @return capacity
*/
static inline uint16 GetVehicleDefaultCapacity(EngineID engine, CargoID *cargo_type)
{
const Engine *e = Engine::Get(engine);
CargoID cargo = (e->CanCarryCargo() ? e->GetDefaultCargoType() : (CargoID)CT_INVALID);
if (cargo_type != NULL) *cargo_type = cargo;
if (cargo == CT_INVALID) return 0;
return e->GetDisplayDefaultCapacity();
}
/**
* Returns all cargos a vehicle can carry.
* @param engine the EngineID of iterest
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit set of CargoIDs
*/
static inline uint32 GetAvailableVehicleCargoTypes(EngineID engine, bool include_initial_cargo_type)
{
uint32 cargos = 0;
CargoID initial_cargo_type;
if (GetVehicleDefaultCapacity(engine, &initial_cargo_type) > 0) {
const EngineInfo *ei = EngInfo(engine);
cargos = ei->refit_mask;
if (include_initial_cargo_type && initial_cargo_type < NUM_CARGO) SetBit(cargos, initial_cargo_type);
}
return cargos;
}
CargoArray GetCapacityOfArticulatedParts(EngineID engine)
{
CargoArray capacity;
const Engine *e = Engine::Get(engine);
CargoID cargo_type;
uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
if (e->type != VEH_TRAIN && e->type != VEH_ROAD) return capacity;
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
EngineID artic_engine = GetNextArticPart(i, engine);
if (artic_engine == INVALID_ENGINE) break;
cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
}
return capacity;
}
/**
* Checks whether any of the articulated parts is refittable
* @param engine the first part
* @return true if refittable
*/
bool IsArticulatedVehicleRefittable(EngineID engine)
{
if (IsEngineRefittable(engine)) return true;
const Engine *e = Engine::Get(engine);
if (e->type != VEH_TRAIN && e->type != VEH_ROAD) return false;
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return false;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
EngineID artic_engine = GetNextArticPart(i, engine);
if (artic_engine == INVALID_ENGINE) break;
if (IsEngineRefittable(artic_engine)) return true;
}
return false;
}
/**
* Merges the refit_masks of all articulated parts.
* @param engine the first part
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @param union_mask returns bit mask of CargoIDs which are a refit option for at least one articulated part
* @param intersection_mask returns bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
*/
void GetArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type, uint32 *union_mask, uint32 *intersection_mask)
{
const Engine *e = Engine::Get(engine);
uint32 veh_cargos = GetAvailableVehicleCargoTypes(engine, include_initial_cargo_type);
*union_mask = veh_cargos;
*intersection_mask = (veh_cargos != 0) ? veh_cargos : UINT32_MAX;
if (e->type != VEH_TRAIN && e->type != VEH_ROAD) return;
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
EngineID artic_engine = GetNextArticPart(i, engine);
if (artic_engine == INVALID_ENGINE) break;
veh_cargos = GetAvailableVehicleCargoTypes(artic_engine, include_initial_cargo_type);
*union_mask |= veh_cargos;
if (veh_cargos != 0) *intersection_mask &= veh_cargos;
}
}
/**
* Ors the refit_masks of all articulated parts.
* @param engine the first part
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for at least one articulated part
*/
uint32 GetUnionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
{
uint32 union_mask, intersection_mask;
GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
return union_mask;
}
/**
* Ands the refit_masks of all articulated parts.
* @param engine the first part
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
*/
uint32 GetIntersectionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
{
uint32 union_mask, intersection_mask;
GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
return intersection_mask;
}
/**
* Tests if all parts of an articulated vehicle are refitted to the same cargo.
* Note: Vehicles not carrying anything are ignored
* @param v the first vehicle in the chain
* @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
* @return true if some parts are carrying different cargos, false if all parts are carrying the same (nothing is also the same)
*/
bool IsArticulatedVehicleCarryingDifferentCargos(const Vehicle *v, CargoID *cargo_type)
{
CargoID first_cargo = CT_INVALID;
do {
if (v->cargo_cap > 0 && v->cargo_type != CT_INVALID) {
if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
if (first_cargo != v->cargo_type) {
if (cargo_type != NULL) *cargo_type = CT_INVALID;
return true;
}
}
switch (v->type) {
case VEH_TRAIN:
v = Train::From(v)->HasArticulatedPart() ? Train::From(v)->GetNextArticPart() : NULL;
break;
case VEH_ROAD:
v = RoadVehicle::From(v)->HasArticulatedPart() ? v->Next() : NULL;
break;
default:
v = NULL;
break;
}
} while (v != NULL);
if (cargo_type != NULL) *cargo_type = first_cargo;
return false;
}
/**
* Checks whether the specs of freshly build articulated vehicles are consistent with the information specified in the purchase list.
* Only essential information is checked to leave room for magic tricks/workarounds to grfcoders.
* It checks:
* For autoreplace/-renew:
* - Default cargo type (without capacity)
* - intersection and union of refit masks.
*/
void CheckConsistencyOfArticulatedVehicle(const Vehicle *v)
{
const Engine *engine = Engine::Get(v->engine_type);
uint32 purchase_refit_union, purchase_refit_intersection;
GetArticulatedRefitMasks(v->engine_type, true, &purchase_refit_union, &purchase_refit_intersection);
CargoArray purchase_default_capacity = GetCapacityOfArticulatedParts(v->engine_type);
uint32 real_refit_union = 0;
uint32 real_refit_intersection = UINT_MAX;
CargoArray real_default_capacity;
do {
uint32 refit_mask = GetAvailableVehicleCargoTypes(v->engine_type, true);
real_refit_union |= refit_mask;
if (refit_mask != 0) real_refit_intersection &= refit_mask;
assert(v->cargo_type < NUM_CARGO);
real_default_capacity[v->cargo_type] += v->cargo_cap;
switch (v->type) {
case VEH_TRAIN:
v = Train::From(v)->HasArticulatedPart() ? Train::From(v)->GetNextArticPart() : NULL;
break;
case VEH_ROAD:
v = RoadVehicle::From(v)->HasArticulatedPart() ? v->Next() : NULL;
break;
default:
v = NULL;
break;
}
} while (v != NULL);
/* Check whether the vehicle carries more cargos than expected */
bool carries_more = false;
for (CargoID cid = 0; cid < NUM_CARGO; cid++) {
if (real_default_capacity[cid] != 0 && purchase_default_capacity[cid] == 0) {
carries_more = true;
break;
}
}
/* show a warning once for each GRF after each game load */
if (real_refit_union != purchase_refit_union || real_refit_intersection != purchase_refit_intersection || carries_more) {
ShowNewGrfVehicleError(engine->index, STR_NEWGRF_BUGGY, STR_NEWGRF_BUGGY_ARTICULATED_CARGO, GBUG_VEH_REFIT, false);
}
}
void AddArticulatedParts(Vehicle *first)
{
VehicleType type = first->type;
if (!HasBit(EngInfo(first->engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
Vehicle *v = first;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
bool flip_image;
EngineID engine_type = GetNextArticPart(i, first->engine_type, first, &flip_image);
if (engine_type == INVALID_ENGINE) return;
/* In the (very rare) case the GRF reported wrong number of articulated parts
* and we run out of available vehicles, bail out. */
if (!Vehicle::CanAllocateItem()) return;
const Engine *e_artic = Engine::Get(engine_type);
switch (type) {
default: NOT_REACHED();
case VEH_TRAIN: {
Train *front = Train::From(first);
Train *t = new Train();
v->SetNext(t);
v = t;
t->subtype = 0;
t->track = front->track;
t->railtype = front->railtype;
t->tcache.first_engine = front->engine_type; // needs to be set before first callback
t->spritenum = e_artic->u.rail.image_index;
if (e_artic->CanCarryCargo()) {
t->cargo_type = e_artic->GetDefaultCargoType();
t->cargo_cap = e_artic->u.rail.capacity; // Callback 36 is called when the consist is finished
} else {
t->cargo_type = front->cargo_type; // Needed for livery selection
t->cargo_cap = 0;
}
t->SetArticulatedPart();
break;
}
case VEH_ROAD: {
RoadVehicle *front = RoadVehicle::From(first);
RoadVehicle *rv = new RoadVehicle();
v->SetNext(rv);
v = rv;
rv->subtype = 0;
rv->rcache.first_engine = front->engine_type; // needs to be set before first callback
rv->rcache.cached_veh_length = 8; // Callback is called when the consist is finished
rv->state = RVSB_IN_DEPOT;
rv->roadtype = front->roadtype;
rv->compatible_roadtypes = front->compatible_roadtypes;
rv->spritenum = e_artic->u.road.image_index;
if (e_artic->CanCarryCargo()) {
rv->cargo_type = e_artic->GetDefaultCargoType();
rv->cargo_cap = e_artic->u.road.capacity; // Callback 36 is called when the consist is finished
} else {
rv->cargo_type = front->cargo_type; // Needed for livery selection
rv->cargo_cap = 0;
}
rv->SetArticulatedPart();
break;
}
}
/* get common values from first engine */
v->direction = first->direction;
v->owner = first->owner;
v->tile = first->tile;
v->x_pos = first->x_pos;
v->y_pos = first->y_pos;
v->z_pos = first->z_pos;
v->build_year = first->build_year;
v->vehstatus = first->vehstatus & ~VS_STOPPED;
v->cargo_subtype = 0;
v->max_age = 0;
v->engine_type = engine_type;
v->value = 0;
v->cur_image = SPR_IMG_QUERY;
v->random_bits = VehicleRandomBits();
if (flip_image) v->spritenum++;
VehicleMove(v, false);
}
}