DocsGPT/scripts/parser/open_ai_func.py

101 lines
3.7 KiB
Python
Raw Normal View History

import os
import tiktoken
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from retry import retry
2023-02-15 14:42:57 +00:00
2023-05-12 10:02:25 +00:00
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.embeddings import CohereEmbeddings
2023-06-03 09:01:50 +00:00
def num_tokens_from_string(string: str, encoding_name: str) -> tuple[int, float]:
2023-05-12 10:02:25 +00:00
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
2023-06-02 20:27:55 +00:00
total_price = (num_tokens / 1000) * 0.0004
return num_tokens, total_price
2023-05-12 10:02:25 +00:00
@retry(tries=10, delay=60)
def store_add_texts_with_retry(store, i):
store.add_texts([i.page_content], metadatas=[i.metadata])
2023-05-12 10:02:25 +00:00
# store_pine.add_texts([i.page_content], metadatas=[i.metadata])
def call_openai_api(docs, folder_name):
2023-05-12 10:02:25 +00:00
# Function to create a vector store from the documents and save it to disk.
# create output folder if it doesn't exist
if not os.path.exists(f"outputs/{folder_name}"):
os.makedirs(f"outputs/{folder_name}")
2023-02-12 16:25:01 +00:00
from tqdm import tqdm
2023-06-02 20:27:55 +00:00
2023-02-12 16:25:01 +00:00
docs_test = [docs[0]]
# remove the first element from docs
docs.pop(0)
# cut first n docs if you want to restart
2023-05-12 10:02:25 +00:00
# docs = docs[:n]
2023-02-12 16:25:01 +00:00
c1 = 0
2023-03-13 14:20:03 +00:00
# pinecone.init(
# api_key="", # find at app.pinecone.io
# environment="us-east1-gcp" # next to api key in console
# )
2023-05-12 10:02:25 +00:00
# index_name = "pandas"
2023-06-03 09:01:50 +00:00
if ( # azure
os.environ.get("OPENAI_API_BASE")
and os.environ.get("OPENAI_API_VERSION")
2023-06-03 09:01:50 +00:00
and os.environ.get("AZURE_DEPLOYMENT_NAME")
and os.environ.get("AZURE_EMBEDDINGS_DEPLOYMENT_NAME")
2023-06-03 09:01:50 +00:00
):
os.environ["OPENAI_API_TYPE"] = "azure"
openai_embeddings = OpenAIEmbeddings(model=os.environ.get("AZURE_EMBEDDINGS_DEPLOYMENT_NAME"))
else:
openai_embeddings = OpenAIEmbeddings()
store = FAISS.from_documents(docs_test, openai_embeddings)
2023-05-12 10:02:25 +00:00
# store_pine = Pinecone.from_documents(docs_test, OpenAIEmbeddings(), index_name=index_name)
2023-02-14 13:06:28 +00:00
# Uncomment for MPNet embeddings
# model_name = "sentence-transformers/all-mpnet-base-v2"
# hf = HuggingFaceEmbeddings(model_name=model_name)
# store = FAISS.from_documents(docs_test, hf)
2023-06-02 20:27:55 +00:00
for i in tqdm(
docs, desc="Embedding 🦖", unit="docs", total=len(docs), bar_format="{l_bar}{bar}| Time Left: {remaining}"
):
2023-02-12 16:25:01 +00:00
try:
store_add_texts_with_retry(store, i)
2023-02-12 16:25:01 +00:00
except Exception as e:
print(e)
print("Error on ", i)
print("Saving progress")
print(f"stopped at {c1} out of {len(docs)}")
2023-02-15 18:40:23 +00:00
store.save_local(f"outputs/{folder_name}")
break
2023-02-12 16:25:01 +00:00
c1 += 1
2023-02-15 18:40:23 +00:00
store.save_local(f"outputs/{folder_name}")
2023-05-12 10:02:25 +00:00
def get_user_permission(docs, folder_name):
2023-05-12 10:02:25 +00:00
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
2023-05-12 10:02:25 +00:00
# docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
2023-05-12 10:02:25 +00:00
# Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api(docs, folder_name)
elif user_input == "":
call_openai_api(docs, folder_name)
else:
print("The API was not called. No money was spent.")