mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-17 21:26:26 +00:00
Merge branch 'main' into custom-llm
This commit is contained in:
commit
f9fe3f2f48
44
.github/workflows/ci.yml
vendored
Normal file
44
.github/workflows/ci.yml
vendored
Normal file
@ -0,0 +1,44 @@
|
||||
name: Build and push DocsGPT Docker image
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v1
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||
|
||||
- name: Login to ghcr.io
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GHCR_TOKEN }}
|
||||
|
||||
# Runs a single command using the runners shell
|
||||
- name: Build and push Docker images to docker.io and ghcr.io
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
file: './application/Dockerfile'
|
||||
platforms: linux/amd64
|
||||
context: ./application
|
||||
push: true
|
||||
tags: |
|
||||
${{ secrets.DOCKER_USERNAME }}/docsgpt:latest
|
||||
ghcr.io/${{ github.repository_owner }}/docsgpt:latest
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -161,3 +161,4 @@ frontend/*.sw?
|
||||
|
||||
application/vectors/
|
||||
|
||||
**/inputs
|
||||
|
38
CONTRIBUTING.md
Normal file
38
CONTRIBUTING.md
Normal file
@ -0,0 +1,38 @@
|
||||
# Welcome to DocsGPT Contributing guideline
|
||||
|
||||
Thank you for choosing this project to contribute to, we are all very grateful!
|
||||
|
||||
# We accept different types of contributions
|
||||
|
||||
📣 Discussions - where you can start a new topic or answer some questions
|
||||
|
||||
🐞 Issues - Is how we track tasks, sometimes its bugs that need fixing, sometimes its new features
|
||||
|
||||
🛠️ Pull requests - Is how you can suggest changes to our repository, to work on existing issue or to add new features
|
||||
|
||||
📚 Wiki - where we have our documentation
|
||||
|
||||
|
||||
## 🐞 Issues and Pull requests
|
||||
|
||||
We value contributions to our issues in form of discussion or suggestion, we recommend that you check out existing issues and our [Roadmap](https://github.com/orgs/arc53/projects/2)
|
||||
|
||||
If you want to contribute by writing code there are few things that you should know before doing it:
|
||||
We have frontend (React, Vite) and Backend (python)
|
||||
|
||||
### If you are looking to contribute to Frontend (⚛️React, Vite):
|
||||
Current frontend is being migrated from /application to /frontend with a new design, so please contribute to the new on. Check out this [Milestone](https://github.com/arc53/DocsGPT/milestone/1) and its issues also [Figma](https://www.figma.com/file/OXLtrl1EAy885to6S69554/DocsGPT?node-id=0%3A1&t=hjWVuxRg9yi5YkJ9-1)
|
||||
Please try to follow guidelines
|
||||
|
||||
|
||||
### If you are looking to contribute to Backend (🐍Python):
|
||||
Check out our issues, and contribute to /application or /scripts (ignore old ingest_rst.py ingest_rst_sphinx.py files, they will be deprecated soon)
|
||||
Currently we don't have any tests(which would be useful😉) but before submitting you PR make sure that after you ingested some test data its queryable
|
||||
|
||||
### Workflow:
|
||||
Create a fork, make changes on your forked repository, submit changes in a form of pull request
|
||||
|
||||
## Questions / collaboration
|
||||
Please join our [Discord](https://discord.gg/n5BX8dh8rU) don't hesitate, we are very friendly and welcoming to new contributors.
|
||||
|
||||
# Thank you so much for considering to contribute to DocsGPT!🙏
|
@ -57,7 +57,7 @@ Copy .env_sample and create .env with your openai api token
|
||||
|
||||
## [Guides](https://github.com/arc53/docsgpt/wiki)
|
||||
|
||||
|
||||
## [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
|
||||
|
||||
## [How to use any other documentation](https://github.com/arc53/docsgpt/wiki/How-to-train-on-other-documentation)
|
||||
|
||||
|
@ -5,6 +5,7 @@ import datetime
|
||||
from flask import Flask, request, render_template
|
||||
# os.environ["LANGCHAIN_HANDLER"] = "langchain"
|
||||
import faiss
|
||||
|
||||
from langchain import FAISS
|
||||
from langchain import OpenAI, VectorDBQA, HuggingFaceHub, Cohere
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
@ -77,6 +78,7 @@ def api_answer():
|
||||
c_prompt = PromptTemplate(input_variables=["summaries", "question"], template=template)
|
||||
# create a chain with the prompt template and the store
|
||||
|
||||
|
||||
#llm = ManifestWrapper(client=manifest, llm_kwargs={"temperature": 0.001, "max_tokens": 2048})
|
||||
llm = OpenAI(openai_api_key=api_key, temperature=0)
|
||||
#llm = HuggingFaceHub(repo_id="bigscience/bloom", huggingfacehub_api_token=api_key)
|
||||
|
@ -45,6 +45,7 @@ pytz==2022.7.1
|
||||
PyYAML==6.0
|
||||
regex==2022.10.31
|
||||
requests==2.28.2
|
||||
retry==0.9.2
|
||||
six==1.16.0
|
||||
snowballstemmer==2.2.0
|
||||
Sphinx==6.1.3
|
||||
@ -60,6 +61,7 @@ tiktoken==0.1.2
|
||||
tokenizers==0.13.2
|
||||
tqdm==4.64.1
|
||||
transformers==4.26.0
|
||||
typer==0.7.0
|
||||
typing-inspect==0.8.0
|
||||
typing_extensions==4.4.0
|
||||
urllib3==1.26.14
|
||||
|
@ -1,6 +1,11 @@
|
||||
from collections import defaultdict
|
||||
import os
|
||||
import sys
|
||||
import nltk
|
||||
import dotenv
|
||||
import typer
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
|
||||
@ -10,28 +15,69 @@ from parser.open_ai_func import call_openai_api, get_user_permission
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
#Specify your folder HERE
|
||||
directory_to_ingest = 'inputs'
|
||||
app = typer.Typer(add_completion=False)
|
||||
|
||||
nltk.download('punkt', quiet=True)
|
||||
nltk.download('averaged_perceptron_tagger', quiet=True)
|
||||
|
||||
nltk.download('punkt')
|
||||
nltk.download('averaged_perceptron_tagger')
|
||||
|
||||
#Splits all files in specified folder to documents
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory_to_ingest).load_data()
|
||||
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = RecursiveCharacterTextSplitter()
|
||||
docs = text_splitter.split_documents(raw_docs)
|
||||
@app.command()
|
||||
def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
|
||||
help="Whether to skip price confirmation"),
|
||||
dir: Optional[List[str]] = typer.Option(["inputs"],
|
||||
help="""List of paths to directory for index creation.
|
||||
E.g. --dir inputs --dir inputs2"""),
|
||||
file: Optional[List[str]] = typer.Option(None,
|
||||
help="""File paths to use (Optional; overrides dir).
|
||||
E.g. --file inputs/1.md --file inputs/2.md"""),
|
||||
recursive: Optional[bool] = typer.Option(True,
|
||||
help="Whether to recursively search in subdirectories."),
|
||||
limit: Optional[int] = typer.Option(None,
|
||||
help="Maximum number of files to read."),
|
||||
formats: Optional[List[str]] = typer.Option([".rst", ".md"],
|
||||
help="""List of required extensions (list with .)
|
||||
Currently supported: .rst, .md, .pdf, .docx, .csv, .epub"""),
|
||||
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles).")):
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the permission_bypass_flag argument is not '-y',
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
permission_bypass_flag = sys.argv[1]
|
||||
if permission_bypass_flag == '-y':
|
||||
call_openai_api(docs)
|
||||
else:
|
||||
get_user_permission(docs)
|
||||
else:
|
||||
get_user_permission(docs)
|
||||
"""
|
||||
Creates index from specified location or files.
|
||||
By default /inputs folder is used, .rst and .md are parsed.
|
||||
"""
|
||||
|
||||
def process_one_docs(directory, folder_name):
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
|
||||
required_exts=formats, num_files_limit=limit,
|
||||
exclude_hidden=exclude).load_data()
|
||||
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
print(raw_docs)
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = RecursiveCharacterTextSplitter()
|
||||
docs = text_splitter.split_documents(raw_docs)
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the yes is not True, then the
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
if yes:
|
||||
call_openai_api(docs, folder_name)
|
||||
else:
|
||||
get_user_permission(docs, folder_name)
|
||||
else:
|
||||
get_user_permission(docs, folder_name)
|
||||
|
||||
folder_counts = defaultdict(int)
|
||||
folder_names = []
|
||||
for dir_path in dir:
|
||||
folder_name = os.path.basename(os.path.normpath(dir_path))
|
||||
folder_counts[folder_name] += 1
|
||||
if folder_counts[folder_name] > 1:
|
||||
folder_name = f"{folder_name}_{folder_counts[folder_name]}"
|
||||
folder_names.append(folder_name)
|
||||
|
||||
for directory, folder_name in zip(dir, folder_names):
|
||||
process_one_docs(directory, folder_name)
|
||||
|
||||
if __name__ == "__main__":
|
||||
app()
|
||||
|
@ -29,6 +29,18 @@ def convert_rst_to_txt(src_dir, dst_dir):
|
||||
f"-D source_suffix=.rst " \
|
||||
f"-C {dst_dir} "
|
||||
sphinx_main(args.split())
|
||||
elif file.endswith(".md"):
|
||||
# Rename the .md file to .rst file
|
||||
src_file = os.path.join(root, file)
|
||||
dst_file = os.path.join(root, file.replace(".md", ".rst"))
|
||||
os.rename(src_file, dst_file)
|
||||
# Convert the .rst file to .txt file using sphinx-build
|
||||
args = f". -b text -D extensions=sphinx.ext.autodoc " \
|
||||
f"-D master_doc={dst_file} " \
|
||||
f"-D source_suffix=.rst " \
|
||||
f"-C {dst_dir} "
|
||||
sphinx_main(args.split())
|
||||
|
||||
|
||||
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
# Function to convert string to tokens and estimate user cost.
|
@ -24,6 +24,8 @@ class RstParser(BaseParser):
|
||||
remove_hyperlinks: bool = True,
|
||||
remove_images: bool = True,
|
||||
remove_table_excess: bool = True,
|
||||
remove_interpreters: bool = True,
|
||||
remove_directives: bool = True,
|
||||
remove_whitespaces_excess: bool = True,
|
||||
#Be carefull with remove_characters_excess, might cause data loss
|
||||
remove_characters_excess: bool = True,
|
||||
@ -34,6 +36,8 @@ class RstParser(BaseParser):
|
||||
self._remove_hyperlinks = remove_hyperlinks
|
||||
self._remove_images = remove_images
|
||||
self._remove_table_excess = remove_table_excess
|
||||
self._remove_interpreters = remove_interpreters
|
||||
self._remove_directives = remove_directives
|
||||
self._remove_whitespaces_excess = remove_whitespaces_excess
|
||||
self._remove_characters_excess = remove_characters_excess
|
||||
|
||||
@ -95,6 +99,18 @@ class RstParser(BaseParser):
|
||||
content = re.sub(pattern, r"\1", content)
|
||||
return content
|
||||
|
||||
def remove_directives(self, content: str) -> str:
|
||||
"""Removes reStructuredText Directives"""
|
||||
pattern = r"`\.\.([^:]+)::"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
def remove_interpreters(self, content: str) -> str:
|
||||
"""Removes reStructuredText Interpreted Text Roles"""
|
||||
pattern = r":(\w+):"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
def remove_table_excess(self, content: str) -> str:
|
||||
"""Pattern to remove grid table separators"""
|
||||
pattern = r"^\+[-]+\+[-]+\+$"
|
||||
@ -129,6 +145,10 @@ class RstParser(BaseParser):
|
||||
content = self.remove_images(content)
|
||||
if self._remove_table_excess:
|
||||
content = self.remove_table_excess(content)
|
||||
if self._remove_directives:
|
||||
content = self.remove_directives(content)
|
||||
if self._remove_interpreters:
|
||||
content = self.remove_interpreters(content)
|
||||
rst_tups = self.rst_to_tups(content)
|
||||
if self._remove_whitespaces_excess:
|
||||
rst_tups = self.remove_whitespaces_excess(rst_tups)
|
||||
|
@ -1,10 +1,15 @@
|
||||
import os
|
||||
import faiss
|
||||
import pickle
|
||||
import tiktoken
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
|
||||
#from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
from retry import retry
|
||||
|
||||
|
||||
|
||||
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
# Function to convert string to tokens and estimate user cost.
|
||||
@ -13,8 +18,17 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
total_price = ((num_tokens/1000) * 0.0004)
|
||||
return num_tokens, total_price
|
||||
|
||||
def call_openai_api(docs):
|
||||
@retry(tries=10, delay=60)
|
||||
def store_add_texts_with_retry(store, i):
|
||||
store.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
|
||||
def call_openai_api(docs, folder_name):
|
||||
# Function to create a vector store from the documents and save it to disk.
|
||||
|
||||
# create output folder if it doesn't exist
|
||||
if not os.path.exists(f"outputs/{folder_name}"):
|
||||
os.makedirs(f"outputs/{folder_name}")
|
||||
|
||||
from tqdm import tqdm
|
||||
docs_test = [docs[0]]
|
||||
# remove the first element from docs
|
||||
@ -31,21 +45,29 @@ def call_openai_api(docs):
|
||||
for i in tqdm(docs, desc="Embedding 🦖", unit="docs", total=len(docs), bar_format='{l_bar}{bar}| Time Left: {remaining}'):
|
||||
try:
|
||||
import time
|
||||
store.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
store_add_texts_with_retry(store, i)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print("Error on ", i)
|
||||
print("Saving progress")
|
||||
print(f"stopped at {c1} out of {len(docs)}")
|
||||
store.save_local("outputs")
|
||||
print("Sleeping for 10 seconds and trying again")
|
||||
time.sleep(10)
|
||||
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
|
||||
store_index_bak = store.index
|
||||
store.index = None
|
||||
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
print("Sleeping for 60 seconds and trying again")
|
||||
time.sleep(60)
|
||||
store.index = store_index_bak
|
||||
store.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
c1 += 1
|
||||
|
||||
store.save_local("outputs")
|
||||
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
|
||||
store.index = None
|
||||
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
|
||||
def get_user_permission(docs):
|
||||
def get_user_permission(docs, folder_name):
|
||||
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
|
||||
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
|
||||
#docs_content = (" ".join(docs))
|
||||
@ -61,8 +83,8 @@ def get_user_permission(docs):
|
||||
#Here we check for user permission before calling the API.
|
||||
user_input = input("Price Okay? (Y/N) \n").lower()
|
||||
if user_input == "y":
|
||||
call_openai_api(docs)
|
||||
call_openai_api(docs, folder_name)
|
||||
elif user_input == "":
|
||||
call_openai_api(docs)
|
||||
call_openai_api(docs, folder_name)
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
print("The API was not called. No money was spent.")
|
||||
|
Loading…
Reference in New Issue
Block a user