mirror of
https://github.com/arc53/DocsGPT
synced 2024-11-03 23:15:37 +00:00
feat: add support for directory list
example: `python ingest.py --dir inputs1 --dir another --dir ../inputs`, the outputs will be in `outputs/input_folder_name/`
This commit is contained in:
parent
5883ce2685
commit
b83589a308
@ -1,3 +1,5 @@
|
||||
from collections import defaultdict
|
||||
import os
|
||||
import sys
|
||||
import nltk
|
||||
import dotenv
|
||||
@ -18,13 +20,16 @@ app = typer.Typer(add_completion=False)
|
||||
nltk.download('punkt', quiet=True)
|
||||
nltk.download('averaged_perceptron_tagger', quiet=True)
|
||||
|
||||
|
||||
#Splits all files in specified folder to documents
|
||||
@app.command()
|
||||
def ingest(directory: Optional[str] = typer.Option("inputs",
|
||||
help="Path to the directory for index creation."),
|
||||
files: Optional[List[str]] = typer.Option(None,
|
||||
help="""File paths to use (Optional; overrides directory).
|
||||
E.g. --files inputs/1.md --files inputs/2.md"""),
|
||||
def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False),
|
||||
dir: Optional[List[str]] = typer.Option(["inputs"],
|
||||
help="""List of paths to directory for index creation.
|
||||
E.g. --dir inputs --dir inputs2"""),
|
||||
file: Optional[List[str]] = typer.Option(None,
|
||||
help="""File paths to use (Optional; overrides dir).
|
||||
E.g. --file inputs/1.md --file inputs/2.md"""),
|
||||
recursive: Optional[bool] = typer.Option(True,
|
||||
help="Whether to recursively search in subdirectories."),
|
||||
limit: Optional[int] = typer.Option(None,
|
||||
@ -38,27 +43,40 @@ def ingest(directory: Optional[str] = typer.Option("inputs",
|
||||
Creates index from specified location or files.
|
||||
By default /inputs folder is used, .rst and .md are parsed.
|
||||
"""
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=files, recursive=recursive,
|
||||
required_exts=formats, num_files_limit=limit,
|
||||
exclude_hidden=exclude).load_data()
|
||||
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
print(raw_docs)
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = RecursiveCharacterTextSplitter()
|
||||
docs = text_splitter.split_documents(raw_docs)
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the permission_bypass_flag argument is not '-y',
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
permission_bypass_flag = sys.argv[1]
|
||||
if permission_bypass_flag == '-y':
|
||||
call_openai_api(docs)
|
||||
def process_one_docs(directory, folder_name):
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
|
||||
required_exts=formats, num_files_limit=limit,
|
||||
exclude_hidden=exclude).load_data()
|
||||
raw_docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
print(raw_docs)
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = RecursiveCharacterTextSplitter()
|
||||
docs = text_splitter.split_documents(raw_docs)
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the yes is not True, then the
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
if yes:
|
||||
call_openai_api(docs, folder_name)
|
||||
else:
|
||||
get_user_permission(docs, folder_name)
|
||||
else:
|
||||
get_user_permission(docs)
|
||||
else:
|
||||
get_user_permission(docs)
|
||||
get_user_permission(docs, folder_name)
|
||||
|
||||
folder_counts = defaultdict(int)
|
||||
folder_names = []
|
||||
for dir_path in dir:
|
||||
folder_name = os.path.basename(os.path.normpath(dir_path))
|
||||
folder_counts[folder_name] += 1
|
||||
if folder_counts[folder_name] > 1:
|
||||
folder_name = f"{folder_name}_{folder_counts[folder_name]}"
|
||||
folder_names.append(folder_name)
|
||||
|
||||
for directory, folder_name in zip(dir, folder_names):
|
||||
process_one_docs(directory, folder_name)
|
||||
|
||||
if __name__ == "__main__":
|
||||
app()
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import faiss
|
||||
import pickle
|
||||
import tiktoken
|
||||
@ -12,8 +13,13 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
total_price = ((num_tokens/1000) * 0.0004)
|
||||
return num_tokens, total_price
|
||||
|
||||
def call_openai_api(docs):
|
||||
def call_openai_api(docs, folder_name):
|
||||
# Function to create a vector store from the documents and save it to disk.
|
||||
|
||||
# create output folder if it doesn't exist
|
||||
if not os.path.exists(f"outputs/{folder_name}"):
|
||||
os.makedirs(f"outputs/{folder_name}")
|
||||
|
||||
from tqdm import tqdm
|
||||
docs_test = [docs[0]]
|
||||
# remove the first element from docs
|
||||
@ -31,25 +37,23 @@ def call_openai_api(docs):
|
||||
print("Error on ", i)
|
||||
print("Saving progress")
|
||||
print(f"stopped at {c1} out of {len(docs)}")
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
|
||||
store_index_bak = store.index
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
print("Sleeping for 60 seconds and trying again")
|
||||
time.sleep(60)
|
||||
faiss.write_index(store_index_bak, "docs.index")
|
||||
store.index = store_index_bak
|
||||
store.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
c1 += 1
|
||||
|
||||
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
|
||||
def get_user_permission(docs):
|
||||
def get_user_permission(docs, folder_name):
|
||||
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
|
||||
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
|
||||
#docs_content = (" ".join(docs))
|
||||
@ -65,8 +69,8 @@ def get_user_permission(docs):
|
||||
#Here we check for user permission before calling the API.
|
||||
user_input = input("Price Okay? (Y/N) \n").lower()
|
||||
if user_input == "y":
|
||||
call_openai_api(docs)
|
||||
call_openai_api(docs, folder_name)
|
||||
elif user_input == "":
|
||||
call_openai_api(docs)
|
||||
call_openai_api(docs, folder_name)
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
|
Loading…
Reference in New Issue
Block a user