forked from Archives/langchain
31 lines
1.7 KiB
Markdown
31 lines
1.7 KiB
Markdown
# Deep Lake
|
||
This page covers how to use the Deep Lake ecosystem within LangChain.
|
||
|
||
## Why Deep Lake?
|
||
- More than just a (multi-modal) vector store. You can later use the dataset to fine-tune your own LLM models.
|
||
- Not only stores embeddings, but also the original data with automatic version control.
|
||
- Truly serverless. Doesn't require another service and can be used with major cloud providers (AWS S3, GCS, etc.)
|
||
|
||
## More Resources
|
||
1. [Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data](https://www.activeloop.ai/resources/ultimate-guide-to-lang-chain-deep-lake-build-chat-gpt-to-answer-questions-on-your-financial-data/)
|
||
2. [Twitter the-algorithm codebase analysis with Deep Lake](../use_cases/code/twitter-the-algorithm-analysis-deeplake.ipynb)
|
||
3. Here is [whitepaper](https://www.deeplake.ai/whitepaper) and [academic paper](https://arxiv.org/pdf/2209.10785.pdf) for Deep Lake
|
||
4. Here is a set of additional resources available for review: [Deep Lake](https://github.com/activeloopai/deeplake), [Getting Started](https://docs.activeloop.ai/getting-started) and [Tutorials](https://docs.activeloop.ai/hub-tutorials)
|
||
|
||
## Installation and Setup
|
||
- Install the Python package with `pip install deeplake`
|
||
|
||
## Wrappers
|
||
|
||
### VectorStore
|
||
|
||
There exists a wrapper around Deep Lake, a data lake for Deep Learning applications, allowing you to use it as a vector store (for now), whether for semantic search or example selection.
|
||
|
||
To import this vectorstore:
|
||
```python
|
||
from langchain.vectorstores import DeepLake
|
||
```
|
||
|
||
|
||
For a more detailed walkthrough of the Deep Lake wrapper, see [this notebook](../modules/indexes/vectorstores/examples/deeplake.ipynb)
|