Co-authored-by: Tyler Hutcherson <tyler.hutcherson@redis.com>
2.5 KiB
Redis
This page covers how to use the Redis ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Redis wrappers.
Installation and Setup
- Install the Redis Python SDK with
pip install redis
Wrappers
Cache
The Cache wrapper allows for Redis to be used as a remote, low-latency, in-memory cache for LLM prompts and responses.
Standard Cache
The standard cache is the Redis bread & butter of use case in production for both open source and enterprise users globally.
To import this cache:
from langchain.cache import RedisCache
To use this cache with your LLMs:
import langchain
import redis
redis_client = redis.Redis.from_url(...)
langchain.llm_cache = RedisCache(redis_client)
Semantic Cache
Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends Redis as both a cache and a vectorstore.
To import this cache:
from langchain.cache import RedisSemanticCache
To use this cache with your LLMs:
import langchain
import redis
# use any embedding provider...
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
redis_url = "redis://localhost:6379"
langchain.llm_cache = RedisSemanticCache(
embedding=FakeEmbeddings(),
redis_url=redis_url
)
VectorStore
The vectorstore wrapper turns Redis into a low-latency vector database for semantic search or LLM content retrieval.
To import this vectorstore:
from langchain.vectorstores import Redis
For a more detailed walkthrough of the Redis vectorstore wrapper, see this notebook.
Retriever
The Redis vector store retriever wrapper generalizes the vectorstore class to perform low-latency document retrieval. To create the retriever, simply call .as_retriever()
on the base vectorstore class.
Memory
Redis can be used to persist LLM conversations.
Vector Store Retriever Memory
For a more detailed walkthrough of the VectorStoreRetrieverMemory
wrapper, see this notebook.
Chat Message History Memory
For a detailed example of Redis to cache conversation message history, see this notebook.