langchain/docs/integrations/rwkv.md
Leonid Ganeline e2d7677526
docs: compound ecosystem and integrations (#4870)
# Docs: compound ecosystem and integrations

**Problem statement:** We have a big overlap between the
References/Integrations and Ecosystem/LongChain Ecosystem pages. It
confuses users. It creates a situation when new integration is added
only on one of these pages, which creates even more confusion.
- removed References/Integrations page (but move all its information
into the individual integration pages - in the next PR).
- renamed Ecosystem/LongChain Ecosystem into Integrations/Integrations.
I like the Ecosystem term. It is more generic and semantically richer
than the Integration term. But it mentally overloads users. The
`integration` term is more concrete.
UPDATE: after discussion, the Ecosystem is the term.
Ecosystem/Integrations is the page (in place of Ecosystem/LongChain
Ecosystem).

As a result, a user gets a single place to start with the individual
integration.
2023-05-18 09:29:57 -07:00

1.9 KiB

RWKV-4

This page covers how to use the RWKV-4 wrapper within LangChain. It is broken into two parts: installation and setup, and then usage with an example.

Installation and Setup

  • Install the Python package with pip install rwkv
  • Install the tokenizer Python package with pip install tokenizer
  • Download a RWKV model and place it in your desired directory
  • Download the tokens file

Usage

RWKV

To use the RWKV wrapper, you need to provide the path to the pre-trained model file and the tokenizer's configuration.

from langchain.llms import RWKV

# Test the model

```python

def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

# Instruction:
{instruction}

# Input:
{input}

# Response:
"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

# Instruction:
{instruction}

# Response:
"""


model = RWKV(model="./models/RWKV-4-Raven-3B-v7-Eng-20230404-ctx4096.pth", strategy="cpu fp32", tokens_path="./rwkv/20B_tokenizer.json")
response = model(generate_prompt("Once upon a time, "))

Model File

You can find links to model file downloads at the RWKV-4-Raven repository.

RWKV VRAM
Model | 8bit | bf16/fp16 | fp32
14B   | 16GB | 28GB      | >50GB
7B    | 8GB  | 14GB      | 28GB
3B    | 2.8GB| 6GB       | 12GB
1b5   | 1.3GB| 3GB       | 6GB

See the rwkv pip page for more information about strategies, including streaming and cuda support.