langchain/docs/getting_started/llm.md
Jim Salmons e9baf9c134
Update llm.md (#164)
Without the print on the `llm` call, the new user sees no visible effect
when just getting started. The assumption here is the new user is
running this in a new sandbox script file or repl via copy-paste.
2022-11-20 15:22:53 -08:00

26 lines
743 B
Markdown

# Calling a LLM
The most basic building block of LangChain is calling an LLM on some input.
Let's walk through a simple example of how to do this.
For this purpose, let's pretend we are building a service that generates a company name based on what the company makes.
In order to do this, we first need to import the LLM wrapper.
```python
from langchain.llms import OpenAI
```
We can then initialize the wrapper with any arguments.
In this example, we probably want the outputs to be MORE random, so we'll initialize it with a HIGH temperature.
```python
llm = OpenAI(temperature=0.9)
```
We can now call it on some input!
```python
text = "What would be a good company name a company that makes colorful socks?"
print(llm(text))
```