langchain/docs/integrations/modal.md
Leonid Ganeline e2d7677526
docs: compound ecosystem and integrations (#4870)
# Docs: compound ecosystem and integrations

**Problem statement:** We have a big overlap between the
References/Integrations and Ecosystem/LongChain Ecosystem pages. It
confuses users. It creates a situation when new integration is added
only on one of these pages, which creates even more confusion.
- removed References/Integrations page (but move all its information
into the individual integration pages - in the next PR).
- renamed Ecosystem/LongChain Ecosystem into Integrations/Integrations.
I like the Ecosystem term. It is more generic and semantically richer
than the Integration term. But it mentally overloads users. The
`integration` term is more concrete.
UPDATE: after discussion, the Ecosystem is the term.
Ecosystem/Integrations is the page (in place of Ecosystem/LongChain
Ecosystem).

As a result, a user gets a single place to start with the individual
integration.
2023-05-18 09:29:57 -07:00

1.6 KiB

Modal

This page covers how to use the Modal ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Modal wrappers.

Installation and Setup

  • Install with pip install modal-client
  • Run modal token new

Define your Modal Functions and Webhooks

You must include a prompt. There is a rigid response structure.

class Item(BaseModel):
    prompt: str

@stub.webhook(method="POST")
def my_webhook(item: Item):
    return {"prompt": my_function.call(item.prompt)}

An example with GPT2:

from pydantic import BaseModel

import modal

stub = modal.Stub("example-get-started")

volume = modal.SharedVolume().persist("gpt2_model_vol")
CACHE_PATH = "/root/model_cache"

@stub.function(
    gpu="any",
    image=modal.Image.debian_slim().pip_install(
        "tokenizers", "transformers", "torch", "accelerate"
    ),
    shared_volumes={CACHE_PATH: volume},
    retries=3,
)
def run_gpt2(text: str):
    from transformers import GPT2Tokenizer, GPT2LMHeadModel
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    model = GPT2LMHeadModel.from_pretrained('gpt2')
    encoded_input = tokenizer(text, return_tensors='pt').input_ids
    output = model.generate(encoded_input, max_length=50, do_sample=True)
    return tokenizer.decode(output[0], skip_special_tokens=True)

class Item(BaseModel):
    prompt: str

@stub.webhook(method="POST")
def get_text(item: Item):
    return {"prompt": run_gpt2.call(item.prompt)}

Wrappers

LLM

There exists an Modal LLM wrapper, which you can access with

from langchain.llms import Modal