forked from Archives/langchain
Compare commits
22 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
84d7ad397d | ||
|
de551d62a8 | ||
|
d8fd0e790c | ||
|
97c2b31cc5 | ||
|
f1dc03d0cc | ||
|
f76e9eaab1 | ||
|
db2e9c2b0d | ||
|
d22651d82a | ||
|
c46478d70e | ||
|
e3fcc72879 | ||
|
2fdb1d842b | ||
|
c30ef7dbc4 | ||
|
8a7871ece3 | ||
|
201ecdc9ee | ||
|
149fe0055e | ||
|
096b82f2a1 | ||
|
87b5a84cfb | ||
|
ed97aa65af | ||
|
c9e6baf60d | ||
|
7cde1cbfc3 | ||
|
17213209e0 | ||
|
895f862662 |
144
.dockerignore
Normal file
144
.dockerignore
Normal file
@ -0,0 +1,144 @@
|
||||
.vscode/
|
||||
.idea/
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
pip-wheel-metadata/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
notebooks/
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
.venvs
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# macOS display setting files
|
||||
.DS_Store
|
||||
|
||||
|
||||
|
||||
# docker
|
||||
docker/
|
||||
!docker/assets/
|
||||
.dockerignore
|
||||
docker.build
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -106,6 +106,7 @@ celerybeat.pid
|
||||
|
||||
# Environments
|
||||
.env
|
||||
!docker/.env
|
||||
.venv
|
||||
.venvs
|
||||
env/
|
||||
@ -134,3 +135,4 @@ dmypy.json
|
||||
|
||||
# macOS display setting files
|
||||
.DS_Store
|
||||
docker.build
|
||||
|
@ -151,6 +151,10 @@ poetry run jupyter notebook
|
||||
|
||||
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
|
||||
|
||||
## Using Docker
|
||||
|
||||
Refer to [DOCKER.md](docker/DOCKER.md) for more information.
|
||||
|
||||
## Documentation
|
||||
|
||||
### Contribute Documentation
|
||||
|
24
Makefile
24
Makefile
@ -1,5 +1,8 @@
|
||||
.PHONY: all clean format lint test tests test_watch integration_tests help
|
||||
|
||||
GIT_HASH ?= $(shell git rev-parse --short HEAD)
|
||||
LANGCHAIN_VERSION := $(shell grep '^version' pyproject.toml | cut -d '=' -f2 | tr -d '"')
|
||||
|
||||
all: help
|
||||
|
||||
coverage:
|
||||
@ -31,8 +34,7 @@ lint:
|
||||
test:
|
||||
poetry run pytest tests/unit_tests
|
||||
|
||||
tests:
|
||||
poetry run pytest tests/unit_tests
|
||||
tests: test
|
||||
|
||||
test_watch:
|
||||
poetry run ptw --now . -- tests/unit_tests
|
||||
@ -46,8 +48,26 @@ help:
|
||||
@echo 'docs_build - build the documentation'
|
||||
@echo 'docs_clean - clean the documentation build artifacts'
|
||||
@echo 'docs_linkcheck - run linkchecker on the documentation'
|
||||
ifneq ($(shell command -v docker 2> /dev/null),)
|
||||
@echo 'docker - build and run the docker dev image'
|
||||
@echo 'docker.run - run the docker dev image'
|
||||
@echo 'docker.jupyter - start a jupyter notebook inside container'
|
||||
@echo 'docker.build - build the docker dev image'
|
||||
@echo 'docker.force_build - force a rebuild'
|
||||
@echo 'docker.test - run the unit tests in docker'
|
||||
@echo 'docker.lint - run the linters in docker'
|
||||
@echo 'docker.clean - remove the docker dev image'
|
||||
endif
|
||||
@echo 'format - run code formatters'
|
||||
@echo 'lint - run linters'
|
||||
@echo 'test - run unit tests'
|
||||
@echo 'test_watch - run unit tests in watch mode'
|
||||
@echo 'integration_tests - run integration tests'
|
||||
|
||||
# include the following makefile if the docker executable is available
|
||||
ifeq ($(shell command -v docker 2> /dev/null),)
|
||||
$(info Docker not found, skipping docker-related targets)
|
||||
else
|
||||
include docker/Makefile
|
||||
endif
|
||||
|
||||
|
14
README.md
14
README.md
@ -1,11 +1,15 @@
|
||||
# 🦜️🔗 LangChain
|
||||
# 🦜️🔗 LangChain - Docker
|
||||
|
||||
⚡ Building applications with LLMs through composability ⚡
|
||||
WIP: This is a fork of langchain focused on implementing a docker warpper and
|
||||
toolchain. The goal is to make it easy to use LLM chains running inside a
|
||||
container, build custom docker based tools and let agents run arbitrary
|
||||
untrusted code inside.
|
||||
|
||||
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [![linkcheck](https://github.com/hwchase17/langchain/actions/workflows/linkcheck.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/linkcheck.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
|
||||
Currently exploring the following:
|
||||
|
||||
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
|
||||
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
|
||||
- Docker wrapper for LLMs and chains
|
||||
- Creating a toolchain for building docker based LLM tools.
|
||||
- Building agents that can run arbitrary untrusted code inside a container.
|
||||
|
||||
## Quick Install
|
||||
|
||||
|
13
docker/.env
Normal file
13
docker/.env
Normal file
@ -0,0 +1,13 @@
|
||||
# python env
|
||||
PYTHON_VERSION=3.10
|
||||
|
||||
# -E flag is required
|
||||
# comment the following line to only install dev dependencies
|
||||
POETRY_EXTRA_PACKAGES="-E all"
|
||||
|
||||
# at least one group needed
|
||||
POETRY_DEPENDENCIES="dev,test,lint,typing"
|
||||
|
||||
# langchain env. warning: these variables will be baked into the docker image !
|
||||
OPENAI_API_KEY=${OPENAI_API_KEY:-}
|
||||
SERPAPI_API_KEY=${SERPAPI_API_KEY:-}
|
53
docker/DOCKER.md
Normal file
53
docker/DOCKER.md
Normal file
@ -0,0 +1,53 @@
|
||||
# Using Docker
|
||||
|
||||
To quickly get started, run the command `make docker`.
|
||||
|
||||
If docker is installed the Makefile will export extra targets in the fomrat `docker.*` to build and run the docker image. Type `make` for a list of available tasks.
|
||||
|
||||
There is a basic `docker-compose.yml` in the docker directory.
|
||||
|
||||
## Building the development image
|
||||
|
||||
Using `make docker` will build the dev image if it does not exist, then drops
|
||||
you inside the container with the langchain environment available in the shell.
|
||||
|
||||
### Customizing the image and installed dependencies
|
||||
|
||||
The image is built with a default python version and all extras and dev
|
||||
dependencies. It can be customized by changing the variables in the [.env](/docker/.env)
|
||||
file.
|
||||
|
||||
If you don't need all the `extra` dependencies a slimmer image can be obtained by
|
||||
commenting out `POETRY_EXTRA_PACKAGES` in the [.env](docker/.env) file.
|
||||
|
||||
### Image caching
|
||||
|
||||
The Dockerfile is optimized to cache the poetry install step. A rebuild is triggered when there a change to the source code.
|
||||
|
||||
## Example Usage
|
||||
|
||||
All commands from langchain's python environment are available by default in the container.
|
||||
|
||||
A few examples:
|
||||
```bash
|
||||
# run jupyter notebook
|
||||
docker run --rm -it IMG jupyter notebook
|
||||
|
||||
# run ipython
|
||||
docker run --rm -it IMG ipython
|
||||
|
||||
# start web server
|
||||
docker run --rm -p 8888:8888 IMG python -m http.server 8888
|
||||
```
|
||||
|
||||
## Testing / Linting
|
||||
|
||||
Tests and lints are run using your local source directory that is mounted on the volume /src.
|
||||
|
||||
Run unit tests in the container with `make docker.test`.
|
||||
|
||||
Run the linting and formatting checks with `make docker.lint`.
|
||||
|
||||
Note: this task can run in parallel using `make -j4 docker.lint`.
|
||||
|
||||
|
104
docker/Dockerfile
Normal file
104
docker/Dockerfile
Normal file
@ -0,0 +1,104 @@
|
||||
# vim: ft=dockerfile
|
||||
#
|
||||
# see also: https://github.com/python-poetry/poetry/discussions/1879
|
||||
# - with https://github.com/bneijt/poetry-lock-docker
|
||||
# see https://github.com/thehale/docker-python-poetry
|
||||
# see https://github.com/max-pfeiffer/uvicorn-poetry
|
||||
|
||||
# use by default the slim version of python
|
||||
ARG PYTHON_IMAGE_TAG=slim
|
||||
ARG PYTHON_VERSION=${PYTHON_VERSION:-3.11.2}
|
||||
|
||||
####################
|
||||
# Base Environment
|
||||
####################
|
||||
FROM python:$PYTHON_VERSION-$PYTHON_IMAGE_TAG AS lchain-base
|
||||
|
||||
ARG UID=1000
|
||||
ARG USERNAME=lchain
|
||||
|
||||
ENV USERNAME=$USERNAME
|
||||
|
||||
RUN groupadd -g ${UID} $USERNAME
|
||||
RUN useradd -l -m -u ${UID} -g ${UID} $USERNAME
|
||||
|
||||
# used for mounting source code
|
||||
RUN mkdir /src
|
||||
VOLUME /src
|
||||
|
||||
|
||||
#######################
|
||||
## Poetry Builder Image
|
||||
#######################
|
||||
FROM lchain-base AS lchain-base-builder
|
||||
|
||||
ARG POETRY_EXTRA_PACKAGES=$POETRY_EXTRA_PACKAGES
|
||||
ARG POETRY_DEPENDENCIES=$POETRY_DEPENDENCIES
|
||||
|
||||
ENV HOME=/root
|
||||
ENV POETRY_HOME=/root/.poetry
|
||||
ENV POETRY_VIRTUALENVS_IN_PROJECT=false
|
||||
ENV POETRY_NO_INTERACTION=1
|
||||
ENV CACHE_DIR=$HOME/.cache
|
||||
ENV POETRY_CACHE_DIR=$CACHE_DIR/pypoetry
|
||||
ENV PATH="$POETRY_HOME/bin:$PATH"
|
||||
|
||||
WORKDIR /root
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
build-essential \
|
||||
git \
|
||||
curl
|
||||
|
||||
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
|
||||
|
||||
RUN mkdir -p $CACHE_DIR
|
||||
|
||||
## setup poetry
|
||||
RUN curl -sSL -o $CACHE_DIR/pypoetry-installer.py https://install.python-poetry.org/
|
||||
RUN python3 $CACHE_DIR/pypoetry-installer.py
|
||||
|
||||
|
||||
# # Copy poetry files
|
||||
COPY poetry.* pyproject.toml ./
|
||||
|
||||
RUN mkdir /pip-prefix
|
||||
|
||||
RUN poetry export $POETRY_EXTRA_PACKAGES --with $POETRY_DEPENDENCIES -f requirements.txt --output requirements.txt --without-hashes && \
|
||||
pip install --no-cache-dir --disable-pip-version-check --prefix /pip-prefix -r requirements.txt
|
||||
|
||||
|
||||
# add custom motd message
|
||||
COPY docker/assets/etc/motd /tmp/motd
|
||||
RUN cat /tmp/motd > /etc/motd
|
||||
|
||||
RUN printf "\n%s\n%s\n" "$(poetry version)" "$(python --version)" >> /etc/motd
|
||||
|
||||
###################
|
||||
## Runtime Image
|
||||
###################
|
||||
FROM lchain-base AS lchain
|
||||
|
||||
#jupyter port
|
||||
EXPOSE 8888
|
||||
|
||||
COPY docker/assets/entry.sh /entry
|
||||
RUN chmod +x /entry
|
||||
|
||||
COPY --from=lchain-base-builder /etc/motd /etc/motd
|
||||
COPY --from=lchain-base-builder /usr/bin/git /usr/bin/git
|
||||
|
||||
USER ${USERNAME:-lchain}
|
||||
ENV HOME /home/$USERNAME
|
||||
WORKDIR /home/$USERNAME
|
||||
|
||||
COPY --chown=lchain:lchain --from=lchain-base-builder /pip-prefix $HOME/.local/
|
||||
|
||||
COPY . .
|
||||
|
||||
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
|
||||
RUN pip install --no-deps --disable-pip-version-check --no-cache-dir -e .
|
||||
|
||||
|
||||
entrypoint ["/entry"]
|
84
docker/Makefile
Normal file
84
docker/Makefile
Normal file
@ -0,0 +1,84 @@
|
||||
#do not call this makefile it is included in the main Makefile
|
||||
.PHONY: docker docker.jupyter docker.run docker.force_build docker.clean \
|
||||
docker.test docker.lint docker.lint.mypy docker.lint.black \
|
||||
docker.lint.isort docker.lint.flake
|
||||
|
||||
# read python version from .env file ignoring comments
|
||||
PYTHON_VERSION := $(shell grep PYTHON_VERSION docker/.env | cut -d '=' -f2)
|
||||
POETRY_EXTRA_PACKAGES := $(shell grep '^[^#]*POETRY_EXTRA_PACKAGES' docker/.env | cut -d '=' -f2)
|
||||
POETRY_DEPENDENCIES := $(shell grep 'POETRY_DEPENDENCIES' docker/.env | cut -d '=' -f2)
|
||||
|
||||
|
||||
DOCKER_SRC := $(shell find docker -type f)
|
||||
DOCKER_IMAGE_NAME = langchain/dev
|
||||
|
||||
# SRC is all files matched by the git ls-files command
|
||||
SRC := $(shell git ls-files -- '*' ':!:docker/*')
|
||||
|
||||
# set DOCKER_BUILD_PROGRESS=plain to see detailed build progress
|
||||
DOCKER_BUILD_PROGRESS ?= auto
|
||||
|
||||
# extra message to show when entering the docker container
|
||||
DOCKER_MOTD := docker/assets/etc/motd
|
||||
|
||||
ROOTDIR := $(shell git rev-parse --show-toplevel)
|
||||
|
||||
DOCKER_LINT_CMD = docker run --rm -i -u lchain -v $(ROOTDIR):/src $(DOCKER_IMAGE_NAME):$(GIT_HASH)
|
||||
|
||||
docker: docker.run
|
||||
|
||||
docker.run: docker.build
|
||||
@echo "Docker image: $(DOCKER_IMAGE_NAME):$(GIT_HASH)"
|
||||
docker run --rm -it -u lchain -v $(ROOTDIR):/src $(DOCKER_IMAGE_NAME):$(GIT_HASH)
|
||||
|
||||
docker.jupyter: docker.build
|
||||
docker run --rm -it -v $(ROOTDIR):/src $(DOCKER_IMAGE_NAME):$(GIT_HASH) jupyter notebook
|
||||
|
||||
docker.build: $(SRC) $(DOCKER_SRC) $(DOCKER_MOTD)
|
||||
ifdef $(DOCKER_BUILDKIT)
|
||||
docker buildx build --build-arg PYTHON_VERSION=$(PYTHON_VERSION) \
|
||||
--build-arg POETRY_EXTRA_PACKAGES=$(POETRY_EXTRA_PACKAGES) \
|
||||
--build-arg POETRY_DEPENDENCIES=$(POETRY_DEPENDENCIES) \
|
||||
--progress=$(DOCKER_BUILD_PROGRESS) \
|
||||
$(BUILD_FLAGS) -f docker/Dockerfile -t $(DOCKER_IMAGE_NAME):$(GIT_HASH) .
|
||||
else
|
||||
docker build --build-arg PYTHON_VERSION=$(PYTHON_VERSION) \
|
||||
--build-arg POETRY_EXTRA_PACKAGES=$(POETRY_EXTRA_PACKAGES) \
|
||||
--build-arg POETRY_DEPENDENCIES=$(POETRY_DEPENDENCIES) \
|
||||
$(BUILD_FLAGS) -f docker/Dockerfile -t $(DOCKER_IMAGE_NAME):$(GIT_HASH) .
|
||||
endif
|
||||
docker tag $(DOCKER_IMAGE_NAME):$(GIT_HASH) $(DOCKER_IMAGE_NAME):latest
|
||||
@touch $@ # this prevents docker from rebuilding dependencies that have not
|
||||
@ # changed. Remove the file `docker/docker.build` to force a rebuild.
|
||||
|
||||
docker.force_build: $(DOCKER_SRC)
|
||||
@rm -f docker.build
|
||||
@$(MAKE) docker.build BUILD_FLAGS=--no-cache
|
||||
|
||||
docker.clean:
|
||||
docker rmi $(DOCKER_IMAGE_NAME):$(GIT_HASH) $(DOCKER_IMAGE_NAME):latest
|
||||
|
||||
docker.test: docker.build
|
||||
docker run --rm -it -u lchain -v $(ROOTDIR):/src $(DOCKER_IMAGE_NAME):$(GIT_HASH) \
|
||||
pytest /src/tests/unit_tests
|
||||
|
||||
# this assumes that the docker image has been built
|
||||
docker.lint: docker.lint.mypy docker.lint.black docker.lint.isort \
|
||||
docker.lint.flake
|
||||
|
||||
# these can run in parallel with -j[njobs]
|
||||
docker.lint.mypy:
|
||||
@$(DOCKER_LINT_CMD) mypy /src
|
||||
@printf "\t%s\n" "mypy ... "
|
||||
|
||||
docker.lint.black:
|
||||
@$(DOCKER_LINT_CMD) black /src --check
|
||||
@printf "\t%s\n" "black ... "
|
||||
|
||||
docker.lint.isort:
|
||||
@$(DOCKER_LINT_CMD) isort /src --check
|
||||
@printf "\t%s\n" "isort ... "
|
||||
|
||||
docker.lint.flake:
|
||||
@$(DOCKER_LINT_CMD) flake8 /src
|
||||
@printf "\t%s\n" "flake8 ... "
|
10
docker/assets/entry.sh
Normal file
10
docker/assets/entry.sh
Normal file
@ -0,0 +1,10 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
export PATH=$HOME/.local/bin:$PATH
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
cat /etc/motd
|
||||
exec /bin/bash
|
||||
fi
|
||||
|
||||
exec "$@"
|
8
docker/assets/etc/motd
Normal file
8
docker/assets/etc/motd
Normal file
@ -0,0 +1,8 @@
|
||||
All dependencies have been installed in the current shell. There is no
|
||||
virtualenv or a need for `poetry` inside the container.
|
||||
|
||||
Running the command `make docker.run` at the root directory of the project will
|
||||
build the container the first time. On the next runs it will use the cached
|
||||
image. A rebuild will happen when changes are made to the source code.
|
||||
|
||||
You local source directory has been mounted to the /src directory.
|
17
docker/docker-compose.yml
Normal file
17
docker/docker-compose.yml
Normal file
@ -0,0 +1,17 @@
|
||||
version: "3.7"
|
||||
|
||||
services:
|
||||
langchain:
|
||||
hostname: langchain
|
||||
image: langchain/dev:latest
|
||||
build:
|
||||
context: ../
|
||||
dockerfile: docker/Dockerfile
|
||||
args:
|
||||
PYTHON_VERSION: ${PYTHON_VERSION}
|
||||
POETRY_EXTRA_PACKAGES: ${POETRY_EXTRA_PACKAGES}
|
||||
POETRY_DEPENDENCIES: ${POETRY_DEPENDENCIES}
|
||||
|
||||
restart: unless-stopped
|
||||
ports:
|
||||
- 127.0.0.1:8888:8888
|
@ -2,7 +2,7 @@ Agents
|
||||
==========================
|
||||
|
||||
Some applications will require not just a predetermined chain of calls to LLMs/other tools,
|
||||
but potentially an unknown chain that depends on the user input.
|
||||
but potentially an unknown chain that depends on the user's input.
|
||||
In these types of chains, there is a “agent” which has access to a suite of tools.
|
||||
Depending on the user input, the agent can then decide which, if any, of these tools to call.
|
||||
|
||||
@ -12,7 +12,7 @@ The following sections of documentation are provided:
|
||||
|
||||
- `Key Concepts <./agents/key_concepts.html>`_: A conceptual guide going over the various concepts related to agents.
|
||||
|
||||
- `How-To Guides <./agents/how_to_guides.html>`_: A collection of how-to guides. These highlight how to integrate various types of tools, how to work with different types of agent, and how to customize agents.
|
||||
- `How-To Guides <./agents/how_to_guides.html>`_: A collection of how-to guides. These highlight how to integrate various types of tools, how to work with different types of agents, and how to customize agents.
|
||||
|
||||
- `Reference <../reference/modules/agents.html>`_: API reference documentation for all Agent classes.
|
||||
|
||||
@ -27,4 +27,4 @@ The following sections of documentation are provided:
|
||||
./agents/getting_started.ipynb
|
||||
./agents/key_concepts.md
|
||||
./agents/how_to_guides.rst
|
||||
Reference<../reference/modules/agents.rst>
|
||||
Reference<../reference/modules/agents.rst>
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Agents
|
||||
|
||||
Agents use an LLM to determine which actions to take and in what order.
|
||||
An action can either be using a tool and observing its output, or returning to the user.
|
||||
An action can either be using a tool and observing its output, or returning a response to the user.
|
||||
For a list of easily loadable tools, see [here](tools.md).
|
||||
Here are the agents available in LangChain.
|
||||
|
||||
|
@ -2,8 +2,8 @@ Chains
|
||||
==========================
|
||||
|
||||
Using an LLM in isolation is fine for some simple applications,
|
||||
but many more complex ones require chaining LLMs - either with eachother or with other experts.
|
||||
LangChain provides a standard interface for Chains, as well as some common implementations of chains for easy use.
|
||||
but many more complex ones require chaining LLMs - either with each other or with other experts.
|
||||
LangChain provides a standard interface for Chains, as well as some common implementations of chains for ease of use.
|
||||
|
||||
The following sections of documentation are provided:
|
||||
|
||||
@ -26,4 +26,4 @@ The following sections of documentation are provided:
|
||||
./chains/getting_started.ipynb
|
||||
./chains/how_to_guides.rst
|
||||
./chains/key_concepts.rst
|
||||
Reference<../reference/modules/chains.rst>
|
||||
Reference<../reference/modules/chains.rst>
|
||||
|
@ -9,13 +9,13 @@
|
||||
"In this tutorial, we will learn about creating simple chains in LangChain. We will learn how to create a chain, add components to it, and run it.\n",
|
||||
"\n",
|
||||
"In this tutorial, we will cover:\n",
|
||||
"- Using the simple LLM chain\n",
|
||||
"- Using a simple LLM chain\n",
|
||||
"- Creating sequential chains\n",
|
||||
"- Creating a custom chain\n",
|
||||
"\n",
|
||||
"## Why do we need chains?\n",
|
||||
"\n",
|
||||
"Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, format it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components.\n"
|
||||
"Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -88,7 +88,7 @@
|
||||
"source": [
|
||||
"## Combine chains with the `SequentialChain`\n",
|
||||
"\n",
|
||||
"The next step after calling a language model is make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the `SimpleSequentialChain`. This is the simplest form of sequential chains, where each step has a singular input/output, and the output of one step is the input to the next.\n",
|
||||
"The next step after calling a language model is to make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the `SimpleSequentialChain`. This is the simplest type of a sequential chain, where each step has a single input/output, and the output of one step is the input to the next.\n",
|
||||
"\n",
|
||||
"In this tutorial, our sequential chain will:\n",
|
||||
"1. First, create a company name for a product. We will reuse the `LLMChain` we'd previously initialized to create this company name.\n",
|
||||
@ -156,7 +156,7 @@
|
||||
"source": [
|
||||
"## Create a custom chain with the `Chain` class\n",
|
||||
"\n",
|
||||
"LangChain provides many chains out of the box, but sometimes you may want to create a custom chains for your specific use case. For this example, we will create a custom chain that concatenates the outputs of 2 `LLMChain`s.\n",
|
||||
"LangChain provides many chains out of the box, but sometimes you may want to create a custom chain for your specific use case. For this example, we will create a custom chain that concatenates the outputs of 2 `LLMChain`s.\n",
|
||||
"\n",
|
||||
"In order to create a custom chain:\n",
|
||||
"1. Start by subclassing the `Chain` class,\n",
|
||||
|
199
docs/modules/document_loaders/examples/ifixit.ipynb
Normal file
199
docs/modules/document_loaders/examples/ifixit.ipynb
Normal file
File diff suppressed because one or more lines are too long
145
docs/modules/document_loaders/examples/image.ipynb
Normal file
145
docs/modules/document_loaders/examples/image.ipynb
Normal file
@ -0,0 +1,145 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f70e6118",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Images\n",
|
||||
"\n",
|
||||
"This covers how to load images such as JPGs PNGs into a document format that we can use downstream."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "09d64998",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Using Unstructured"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "0cc0cd42",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders.image import UnstructuredImageLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "082d557c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = UnstructuredImageLoader(\"layout-parser-paper-fast.jpg\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "df11c953",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "4284d44c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(page_content=\"LayoutParser: A Unified Toolkit for Deep\\nLearning Based Document Image Analysis\\n\\n\\n‘Zxjiang Shen' (F3}, Ruochen Zhang”, Melissa Dell*, Benjamin Charles Germain\\nLeet, Jacob Carlson, and Weining LiF\\n\\n\\nsugehen\\n\\nshangthrows, et\\n\\n“Abstract. Recent advanocs in document image analysis (DIA) have been\\n‘pimarliy driven bythe application of neural networks dell roar\\n{uteomer could be aly deployed in production and extended fo farther\\n[nvetigtion. However, various factory ke lcely organize codebanee\\nsnd sophisticated modal cnigurations compat the ey ree of\\n‘erin! innovation by wide sence, Though there have been sng\\n‘Hors to improve reuablty and simplify deep lees (DL) mode\\n‘aon, sone of them ae optimized for challenge inthe demain of DIA,\\nThis roprscte a major gap in the extng fol, sw DIA i eal to\\nscademic research acon wie range of dpi in the social ssencee\\n[rary for streamlining the sage of DL in DIA research and appicn\\n‘tons The core LayoutFaraer brary comes with a sch of simple and\\nIntative interfaee or applying and eutomiing DI. odel fr Inyo de\\npltfom for sharing both protrined modes an fal document dist\\n{ation pipeline We demonutate that LayootPareer shea fr both\\nlightweight and lrgeseledgtieation pipelines in eal-word uae ces\\nThe leary pblely smal at Btspe://layost-pareergsthab So\\n\\n\\n\\n‘Keywords: Document Image Analysis» Deep Learning Layout Analysis\\n‘Character Renguition - Open Serres dary « Tol\\n\\n\\nIntroduction\\n\\n\\n‘Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of\\ndoctiment image analysis (DIA) tea including document image clasiffeation [I]\\n\", lookup_str='', metadata={'source': 'layout-parser-paper-fast.jpg'}, lookup_index=0)"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "09957371",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retain Elements\n",
|
||||
"\n",
|
||||
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "0fab833b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = UnstructuredImageLoader(\"layout-parser-paper-fast.jpg\", mode=\"elements\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "c3e8ff1b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "43c23d2d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(page_content='LayoutParser: A Unified Toolkit for Deep\\nLearning Based Document Image Analysis\\n', lookup_str='', metadata={'source': 'layout-parser-paper-fast.jpg', 'filename': 'layout-parser-paper-fast.jpg', 'page_number': 1, 'category': 'Title'}, lookup_index=0)"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data[0]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -59,6 +59,8 @@ There are a lot of different document loaders that LangChain supports. Below are
|
||||
|
||||
`CoNLL-U <./examples/CoNLL-U.html>`_: A walkthrough of how to load data from a ConLL-U file.
|
||||
|
||||
`iFixit <./examples/ifixit.html>`_: A walkthrough of how to search and load data like guides, technical Q&A's, and device wikis from iFixit.com
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:glob:
|
||||
|
184
docs/modules/prompts/examples/partial.ipynb
Normal file
184
docs/modules/prompts/examples/partial.ipynb
Normal file
@ -0,0 +1,184 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9355a547",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Partial Prompt Templates\n",
|
||||
"\n",
|
||||
"A prompt template is a class with a `.format` method which takes in a key-value map and returns a string (a prompt) to pass to the language model. Like other methods, it can make sense to \"partial\" a prompt template - eg pass in a subset of the required values, as to create a new prompt template which expects only the remaining subset of values.\n",
|
||||
"\n",
|
||||
"LangChain supports this in two ways: we allow for partially formatted prompts (1) with string values, (2) with functions that return string values. These two different ways support different use cases. In the documentation below we go over the motivations for both use cases as well as how to do it in LangChain.\n",
|
||||
"\n",
|
||||
"## Partial With Strings\n",
|
||||
"\n",
|
||||
"One common use case for wanting to partial a prompt template is if you get some of the variables before others. For example, suppose you have a prompt template that requires two variables, `foo` and `baz`. If you get the `foo` value early on in the chain, but the `baz` value later, it can be annoying to wait until you have both variables in the same place to pass them to the prompt template. Instead, you can partial the prompt template with the `foo` value, and then pass the partialed prompt template along and just use that. Below is an example of doing this:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "643af5da",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "4080d8d7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"foobaz\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompt = PromptTemplate(template=\"{foo}{bar}\", input_variables=[\"foo\", \"bar\"])\n",
|
||||
"partial_prompt = prompt.partial(foo=\"foo\");\n",
|
||||
"print(partial_prompt.format(bar=\"baz\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9986766e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also just initialize the prompt with the partialed variables."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "e2ce95b3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"foobaz\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompt = PromptTemplate(template=\"{foo}{bar}\", input_variables=[\"bar\"], partial_variables={\"foo\": \"foo\"})\n",
|
||||
"print(prompt.format(bar=\"baz\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a9c66f83",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Partial With Functions\n",
|
||||
"\n",
|
||||
"The other common use is to partial with a function. The use case for this is when you have a variable you know that you always want to fetch in a common way. A prime example of this is with date or time. Imagine you have a prompt which you always want to have the current date. You can't hard code it in the prompt, and passing it along with the other input variables is a bit annoying. In this case, it's very handy to be able to partial the prompt with a function that always returns the current date."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "d0712d8a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import datetime\n",
|
||||
"\n",
|
||||
"def _get_datetime():\n",
|
||||
" now = datetime.now()\n",
|
||||
" return now.strftime(\"%m/%d/%Y, %H:%M:%S\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "4cbcb666",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Tell me a funny joke about the day 02/27/2023, 22:15:16\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompt = PromptTemplate(\n",
|
||||
" template=\"Tell me a {adjective} joke about the day {date}\", \n",
|
||||
" input_variables=[\"adjective\", \"date\"]\n",
|
||||
");\n",
|
||||
"partial_prompt = prompt.partial(date=_get_datetime)\n",
|
||||
"print(partial_prompt.format(adjective=\"funny\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ffed6811",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also just initialize the prompt with the partialed variables, which often makes more sense in this workflow."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "96285b25",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Tell me a funny joke about the day 02/27/2023, 22:15:16\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompt = PromptTemplate(\n",
|
||||
" template=\"Tell me a {adjective} joke about the day {date}\", \n",
|
||||
" input_variables=[\"adjective\"],\n",
|
||||
" partial_variables={\"date\": _get_datetime}\n",
|
||||
");\n",
|
||||
"print(prompt.format(adjective=\"funny\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4bff16f7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -17,6 +17,8 @@ The user guide here shows more advanced workflows and how to use the library in
|
||||
|
||||
`Few Shot Prompt Examples <./examples/few_shot_examples.html>`_: Examples of Few Shot Prompt Templates.
|
||||
|
||||
`Partial Prompt Template <./examples/partial.html>`_: How to partial Prompt Templates.
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
|
180
docs/modules/utils/examples/docker.ipynb
Normal file
180
docs/modules/utils/examples/docker.ipynb
Normal file
@ -0,0 +1,180 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "O4HPx3boF0"
|
||||
},
|
||||
"source": [],
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "hqQkbPEwTJ"
|
||||
},
|
||||
"source": [
|
||||
"# Using the DockerWrapper utility"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "vCepuypaFH"
|
||||
},
|
||||
"source": [
|
||||
"from langchain.utilities.docker import DockerWrapper"
|
||||
],
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "BtYVqy2YtO"
|
||||
},
|
||||
"source": [
|
||||
"d = DockerWrapper(image='shell')"
|
||||
],
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "ELWWm03ptQ"
|
||||
},
|
||||
"source": [
|
||||
"query = \"\"\"\n",
|
||||
"for i in $(seq 1 10)\n",
|
||||
"do\n",
|
||||
" echo $i\n",
|
||||
"done\n",
|
||||
"\"\"\"\n",
|
||||
"print(d.exec_run(query))"
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"
|
||||
}
|
||||
],
|
||||
"execution_count": 1
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "lGMqLz5sDo"
|
||||
},
|
||||
"source": [
|
||||
"p = DockerWrapper(image='python')\n",
|
||||
"\n",
|
||||
"py_payload = \"\"\"\n",
|
||||
"def hello_world():\n",
|
||||
" return 'hello world'\n",
|
||||
"\n",
|
||||
"hello_world()\n",
|
||||
"\"\"\""
|
||||
],
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "X04Wd6zbrk"
|
||||
},
|
||||
"source": [
|
||||
"print(p.exec_run(py_payload))"
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "'hello world'\n"
|
||||
}
|
||||
],
|
||||
"execution_count": 2
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "lKOfuDoJGk"
|
||||
},
|
||||
"source": [],
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "eSzXtDrpqU"
|
||||
},
|
||||
"source": [
|
||||
"## Passing custom parameters\n",
|
||||
"\n",
|
||||
"By default containers are run with a safe set of parameters. You can pass any parameters\n",
|
||||
"that are accepted by the docker python sdk to the run and exec commands.\n",
|
||||
"\n",
|
||||
"### Using networking"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "eWFGCxD9pv"
|
||||
},
|
||||
"source": [
|
||||
"# by default containers don't have access to the network\n",
|
||||
"print(d.run('ping -c 1 google.com'))"
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "STDERR: Command '/bin/sh -c 'ping -c 1 google.com'' in image 'alpine:latest' returned non-zero exit status 1: b\"ping: bad address 'google.com'\\n\"\n"
|
||||
}
|
||||
],
|
||||
"execution_count": 3
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "Z0YkpuXVyL"
|
||||
},
|
||||
"source": [
|
||||
"# using the network parameter\n",
|
||||
"print(d.run('ping -c 1 google.com', network='bridge'))"
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "PING google.com (142.250.200.110): 56 data bytes\n64 bytes from 142.250.200.110: seq=0 ttl=42 time=13.695 ms\n\n--- google.com ping statistics ---\n1 packets transmitted, 1 packets received, 0% packet loss\nround-trip min/avg/max = 13.695/13.695/13.695 ms\n"
|
||||
}
|
||||
],
|
||||
"execution_count": 4
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"metadata": {
|
||||
"jukit_cell_id": "3rMWzzuLHq"
|
||||
},
|
||||
"source": [],
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"anaconda-cloud": {},
|
||||
"kernelspec": {
|
||||
"display_name": "python",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
@ -16,6 +16,8 @@ from langchain.document_loaders.googledrive import GoogleDriveLoader
|
||||
from langchain.document_loaders.gutenberg import GutenbergLoader
|
||||
from langchain.document_loaders.hn import HNLoader
|
||||
from langchain.document_loaders.html import UnstructuredHTMLLoader
|
||||
from langchain.document_loaders.ifixit import IFixitLoader
|
||||
from langchain.document_loaders.image import UnstructuredImageLoader
|
||||
from langchain.document_loaders.imsdb import IMSDbLoader
|
||||
from langchain.document_loaders.notebook import NotebookLoader
|
||||
from langchain.document_loaders.notion import NotionDirectoryLoader
|
||||
@ -52,6 +54,7 @@ __all__ = [
|
||||
"UnstructuredPowerPointLoader",
|
||||
"UnstructuredWordDocumentLoader",
|
||||
"UnstructuredPDFLoader",
|
||||
"UnstructuredImageLoader",
|
||||
"ObsidianLoader",
|
||||
"UnstructuredDocxLoader",
|
||||
"UnstructuredEmailLoader",
|
||||
@ -68,6 +71,7 @@ __all__ = [
|
||||
"IMSDbLoader",
|
||||
"AZLyricsLoader",
|
||||
"CollegeConfidentialLoader",
|
||||
"IFixitLoader",
|
||||
"GutenbergLoader",
|
||||
"PagedPDFSplitter",
|
||||
"EverNoteLoader",
|
||||
|
202
langchain/document_loaders/ifixit.py
Normal file
202
langchain/document_loaders/ifixit.py
Normal file
@ -0,0 +1,202 @@
|
||||
"""Loader that loads iFixit data."""
|
||||
from typing import List, Optional
|
||||
|
||||
import requests
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.document_loaders.web_base import WebBaseLoader
|
||||
|
||||
IFIXIT_BASE_URL = "https://www.ifixit.com/api/2.0"
|
||||
|
||||
|
||||
class IFixitLoader(BaseLoader):
|
||||
"""Load iFixit repair guides, device wikis and answers.
|
||||
|
||||
iFixit is the largest, open repair community on the web. The site contains nearly
|
||||
100k repair manuals, 200k Questions & Answers on 42k devices, and all the data is
|
||||
licensed under CC-BY.
|
||||
|
||||
This loader will allow you to download the text of a repair guide, text of Q&A's
|
||||
and wikis from devices on iFixit using their open APIs and web scraping.
|
||||
"""
|
||||
|
||||
def __init__(self, web_path: str):
|
||||
"""Initialize with web path."""
|
||||
if not web_path.startswith("https://www.ifixit.com"):
|
||||
raise ValueError("web path must start with 'https://www.ifixit.com'")
|
||||
|
||||
path = web_path.replace("https://www.ifixit.com", "")
|
||||
|
||||
allowed_paths = ["/Device", "/Guide", "/Answers", "/Teardown"]
|
||||
|
||||
""" TODO: Add /Wiki """
|
||||
if not any(path.startswith(allowed_path) for allowed_path in allowed_paths):
|
||||
raise ValueError(
|
||||
"web path must start with /Device, /Guide, /Teardown or /Answers"
|
||||
)
|
||||
|
||||
pieces = [x for x in path.split("/") if x]
|
||||
|
||||
"""Teardowns are just guides by a different name"""
|
||||
self.page_type = pieces[0] if pieces[0] != "Teardown" else "Guide"
|
||||
|
||||
if self.page_type == "Guide" or self.page_type == "Answers":
|
||||
self.id = pieces[2]
|
||||
else:
|
||||
self.id = pieces[1]
|
||||
|
||||
self.web_path = web_path
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
if self.page_type == "Device":
|
||||
return self.load_device()
|
||||
elif self.page_type == "Guide" or self.page_type == "Teardown":
|
||||
return self.load_guide()
|
||||
elif self.page_type == "Answers":
|
||||
return self.load_questions_and_answers()
|
||||
else:
|
||||
raise ValueError("Unknown page type: " + self.page_type)
|
||||
|
||||
@staticmethod
|
||||
def load_suggestions(query: str = "", doc_type: str = "all") -> List[Document]:
|
||||
res = requests.get(
|
||||
IFIXIT_BASE_URL + "/suggest/" + query + "?doctypes=" + doc_type
|
||||
)
|
||||
|
||||
if res.status_code != 200:
|
||||
raise ValueError(
|
||||
'Could not load suggestions for "' + query + '"\n' + res.json()
|
||||
)
|
||||
|
||||
data = res.json()
|
||||
|
||||
results = data["results"]
|
||||
output = []
|
||||
|
||||
for result in results:
|
||||
try:
|
||||
loader = IFixitLoader(result["url"])
|
||||
if loader.page_type == "Device":
|
||||
output += loader.load_device(include_guides=False)
|
||||
else:
|
||||
output += loader.load()
|
||||
except ValueError:
|
||||
continue
|
||||
|
||||
return output
|
||||
|
||||
def load_questions_and_answers(
|
||||
self, url_override: Optional[str] = None
|
||||
) -> List[Document]:
|
||||
loader = WebBaseLoader(self.web_path if url_override is None else url_override)
|
||||
soup = loader.scrape()
|
||||
|
||||
output = []
|
||||
|
||||
title = soup.find("h1", "post-title").text
|
||||
|
||||
output.append("# " + title)
|
||||
output.append(soup.select_one(".post-content .post-text").text.strip())
|
||||
|
||||
output.append("\n## " + soup.find("div", "post-answers-header").text.strip())
|
||||
for answer in soup.select(".js-answers-list .post.post-answer"):
|
||||
if answer.has_attr("itemprop") and "acceptedAnswer" in answer["itemprop"]:
|
||||
output.append("\n### Accepted Answer")
|
||||
elif "post-helpful" in answer["class"]:
|
||||
output.append("\n### Most Helpful Answer")
|
||||
else:
|
||||
output.append("\n### Other Answer")
|
||||
|
||||
output += [
|
||||
a.text.strip() for a in answer.select(".post-content .post-text")
|
||||
]
|
||||
output.append("\n")
|
||||
|
||||
text = "\n".join(output).strip()
|
||||
|
||||
metadata = {"source": self.web_path, "title": title}
|
||||
|
||||
return [Document(page_content=text, metadata=metadata)]
|
||||
|
||||
def load_device(
|
||||
self, url_override: Optional[str] = None, include_guides: bool = True
|
||||
) -> List[Document]:
|
||||
documents = []
|
||||
if url_override is None:
|
||||
url = IFIXIT_BASE_URL + "/wikis/CATEGORY/" + self.id
|
||||
else:
|
||||
url = url_override
|
||||
|
||||
res = requests.get(url)
|
||||
data = res.json()
|
||||
text = "\n".join(
|
||||
[
|
||||
data[key]
|
||||
for key in ["title", "description", "contents_raw"]
|
||||
if key in data
|
||||
]
|
||||
).strip()
|
||||
|
||||
metadata = {"source": self.web_path, "title": data["title"]}
|
||||
documents.append(Document(page_content=text, metadata=metadata))
|
||||
|
||||
if include_guides:
|
||||
"""Load and return documents for each guide linked to from the device"""
|
||||
guide_urls = [guide["url"] for guide in data["guides"]]
|
||||
for guide_url in guide_urls:
|
||||
documents.append(IFixitLoader(guide_url).load()[0])
|
||||
|
||||
return documents
|
||||
|
||||
def load_guide(self, url_override: Optional[str] = None) -> List[Document]:
|
||||
if url_override is None:
|
||||
url = IFIXIT_BASE_URL + "/guides/" + self.id
|
||||
else:
|
||||
url = url_override
|
||||
|
||||
res = requests.get(url)
|
||||
|
||||
if res.status_code != 200:
|
||||
raise ValueError(
|
||||
"Could not load guide: " + self.web_path + "\n" + res.json()
|
||||
)
|
||||
|
||||
data = res.json()
|
||||
|
||||
doc_parts = ["# " + data["title"], data["introduction_raw"]]
|
||||
|
||||
doc_parts.append("\n\n###Tools Required:")
|
||||
if len(data["tools"]) == 0:
|
||||
doc_parts.append("\n - None")
|
||||
else:
|
||||
for tool in data["tools"]:
|
||||
doc_parts.append("\n - " + tool["text"])
|
||||
|
||||
doc_parts.append("\n\n###Parts Required:")
|
||||
if len(data["parts"]) == 0:
|
||||
doc_parts.append("\n - None")
|
||||
else:
|
||||
for part in data["parts"]:
|
||||
doc_parts.append("\n - " + part["text"])
|
||||
|
||||
for row in data["steps"]:
|
||||
doc_parts.append(
|
||||
"\n\n## "
|
||||
+ (
|
||||
row["title"]
|
||||
if row["title"] != ""
|
||||
else "Step {}".format(row["orderby"])
|
||||
)
|
||||
)
|
||||
|
||||
for line in row["lines"]:
|
||||
doc_parts.append(line["text_raw"])
|
||||
|
||||
doc_parts.append(data["conclusion_raw"])
|
||||
|
||||
text = "\n".join(doc_parts)
|
||||
|
||||
metadata = {"source": self.web_path, "title": data["title"]}
|
||||
|
||||
return [Document(page_content=text, metadata=metadata)]
|
13
langchain/document_loaders/image.py
Normal file
13
langchain/document_loaders/image.py
Normal file
@ -0,0 +1,13 @@
|
||||
"""Loader that loads image files."""
|
||||
from typing import List
|
||||
|
||||
from langchain.document_loaders.unstructured import UnstructuredFileLoader
|
||||
|
||||
|
||||
class UnstructuredImageLoader(UnstructuredFileLoader):
|
||||
"""Loader that uses unstructured to load image files, such as PNGs and JPGs."""
|
||||
|
||||
def _get_elements(self) -> List:
|
||||
from unstructured.partition.image import partition_image
|
||||
|
||||
return partition_image(filename=self.file_path)
|
@ -1,12 +1,14 @@
|
||||
"""BasePrompt schema definition."""
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
from typing import Any, Callable, Dict, List, Mapping, Optional, Union
|
||||
|
||||
import yaml
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
from pydantic import BaseModel, Extra, Field, root_validator
|
||||
|
||||
from langchain.formatting import formatter
|
||||
|
||||
@ -117,6 +119,9 @@ class BasePromptTemplate(BaseModel, ABC):
|
||||
"""A list of the names of the variables the prompt template expects."""
|
||||
output_parser: Optional[BaseOutputParser] = None
|
||||
"""How to parse the output of calling an LLM on this formatted prompt."""
|
||||
partial_variables: Mapping[str, Union[str, Callable[[], str]]] = Field(
|
||||
default_factory=dict
|
||||
)
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
@ -132,8 +137,38 @@ class BasePromptTemplate(BaseModel, ABC):
|
||||
"Cannot have an input variable named 'stop', as it is used internally,"
|
||||
" please rename."
|
||||
)
|
||||
if "stop" in values["partial_variables"]:
|
||||
raise ValueError(
|
||||
"Cannot have an partial variable named 'stop', as it is used "
|
||||
"internally, please rename."
|
||||
)
|
||||
|
||||
overall = set(values["input_variables"]).intersection(
|
||||
values["partial_variables"]
|
||||
)
|
||||
if overall:
|
||||
raise ValueError(
|
||||
f"Found overlapping input and partial variables: {overall}"
|
||||
)
|
||||
return values
|
||||
|
||||
def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate:
|
||||
"""Return a partial of the prompt template."""
|
||||
prompt_dict = self.__dict__.copy()
|
||||
prompt_dict["input_variables"] = list(
|
||||
set(self.input_variables).difference(kwargs)
|
||||
)
|
||||
prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs}
|
||||
return type(self)(**prompt_dict)
|
||||
|
||||
def _merge_partial_and_user_variables(self, **kwargs: Any) -> Dict[str, Any]:
|
||||
# Get partial params:
|
||||
partial_kwargs = {
|
||||
k: v if isinstance(v, str) else v()
|
||||
for k, v in self.partial_variables.items()
|
||||
}
|
||||
return {**partial_kwargs, **kwargs}
|
||||
|
||||
@abstractmethod
|
||||
def format(self, **kwargs: Any) -> str:
|
||||
"""Format the prompt with the inputs.
|
||||
@ -173,6 +208,8 @@ class BasePromptTemplate(BaseModel, ABC):
|
||||
|
||||
prompt.save(file_path="path/prompt.yaml")
|
||||
"""
|
||||
if self.partial_variables:
|
||||
raise ValueError("Cannot save prompt with partial variables.")
|
||||
# Convert file to Path object.
|
||||
if isinstance(file_path, str):
|
||||
save_path = Path(file_path)
|
||||
|
@ -68,7 +68,7 @@ class FewShotPromptTemplate(BasePromptTemplate, BaseModel):
|
||||
check_valid_template(
|
||||
values["prefix"] + values["suffix"],
|
||||
values["template_format"],
|
||||
values["input_variables"],
|
||||
values["input_variables"] + list(values["partial_variables"]),
|
||||
)
|
||||
return values
|
||||
|
||||
@ -101,6 +101,7 @@ class FewShotPromptTemplate(BasePromptTemplate, BaseModel):
|
||||
|
||||
prompt.format(variable1="foo")
|
||||
"""
|
||||
kwargs = self._merge_partial_and_user_variables(**kwargs)
|
||||
# Get the examples to use.
|
||||
examples = self._get_examples(**kwargs)
|
||||
# Format the examples.
|
||||
@ -110,6 +111,7 @@ class FewShotPromptTemplate(BasePromptTemplate, BaseModel):
|
||||
# Create the overall template.
|
||||
pieces = [self.prefix, *example_strings, self.suffix]
|
||||
template = self.example_separator.join([piece for piece in pieces if piece])
|
||||
|
||||
# Format the template with the input variables.
|
||||
return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
|
||||
|
||||
|
@ -60,16 +60,18 @@ class FewShotPromptWithTemplates(BasePromptTemplate, BaseModel):
|
||||
@root_validator()
|
||||
def template_is_valid(cls, values: Dict) -> Dict:
|
||||
"""Check that prefix, suffix and input variables are consistent."""
|
||||
input_variables = values["input_variables"]
|
||||
expected_input_variables = set(values["suffix"].input_variables)
|
||||
if values["prefix"] is not None:
|
||||
expected_input_variables |= set(values["prefix"].input_variables)
|
||||
missing_vars = expected_input_variables.difference(input_variables)
|
||||
if missing_vars:
|
||||
raise ValueError(
|
||||
f"Got input_variables={input_variables}, but based on prefix/suffix "
|
||||
f"expected {expected_input_variables}"
|
||||
)
|
||||
if values["validate_template"]:
|
||||
input_variables = values["input_variables"]
|
||||
expected_input_variables = set(values["suffix"].input_variables)
|
||||
expected_input_variables |= set(values["partial_variables"])
|
||||
if values["prefix"] is not None:
|
||||
expected_input_variables |= set(values["prefix"].input_variables)
|
||||
missing_vars = expected_input_variables.difference(input_variables)
|
||||
if missing_vars:
|
||||
raise ValueError(
|
||||
f"Got input_variables={input_variables}, but based on "
|
||||
f"prefix/suffix expected {expected_input_variables}"
|
||||
)
|
||||
return values
|
||||
|
||||
class Config:
|
||||
@ -101,6 +103,7 @@ class FewShotPromptWithTemplates(BasePromptTemplate, BaseModel):
|
||||
|
||||
prompt.format(variable1="foo")
|
||||
"""
|
||||
kwargs = self._merge_partial_and_user_variables(**kwargs)
|
||||
# Get the examples to use.
|
||||
examples = self._get_examples(**kwargs)
|
||||
# Format the examples.
|
||||
|
@ -60,14 +60,16 @@ class PromptTemplate(BasePromptTemplate, BaseModel):
|
||||
|
||||
prompt.format(variable1="foo")
|
||||
"""
|
||||
kwargs = self._merge_partial_and_user_variables(**kwargs)
|
||||
return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
|
||||
|
||||
@root_validator()
|
||||
def template_is_valid(cls, values: Dict) -> Dict:
|
||||
"""Check that template and input variables are consistent."""
|
||||
if values["validate_template"]:
|
||||
all_inputs = values["input_variables"] + list(values["partial_variables"])
|
||||
check_valid_template(
|
||||
values["template"], values["template_format"], values["input_variables"]
|
||||
values["template"], values["template_format"], all_inputs
|
||||
)
|
||||
return values
|
||||
|
||||
|
42
langchain/utilities/docker/__init__.py
Normal file
42
langchain/utilities/docker/__init__.py
Normal file
@ -0,0 +1,42 @@
|
||||
"""Wrapper for untrusted code exectuion on docker."""
|
||||
# TODO: pass payload to contanier via filesystem
|
||||
# TEST: more tests for attach to running container
|
||||
# TODO: embed file payloads in the call to run (in LLMChain)?
|
||||
# TODO: [doc] image selection helper
|
||||
# TODO: LLMChain decorator ?
|
||||
|
||||
|
||||
import docker
|
||||
from typing import Any
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
GVISOR_WARNING = """Warning: gVisor runtime not available for {docker_host}.
|
||||
|
||||
Running untrusted code in a container without gVisor is not recommended. Docker
|
||||
containers are not isolated. They can be abused to gain access to the host
|
||||
system. To mitigate this risk, gVisor can be used to run the container in a
|
||||
sandboxed environment. see: https://gvisor.dev/ for more info.
|
||||
"""
|
||||
|
||||
|
||||
def gvisor_runtime_available(client: Any) -> bool:
|
||||
"""Verify if gVisor runtime is available."""
|
||||
logger.debug("verifying availability of gVisor runtime...")
|
||||
info = client.info()
|
||||
if 'Runtimes' in info:
|
||||
return 'runsc' in info['Runtimes']
|
||||
return False
|
||||
|
||||
|
||||
def _check_gvisor_runtime():
|
||||
client = docker.from_env()
|
||||
docker_host = client.api.base_url
|
||||
if not gvisor_runtime_available(docker.from_env()):
|
||||
logger.warning(GVISOR_WARNING.format(docker_host=docker_host))
|
||||
|
||||
|
||||
_check_gvisor_runtime()
|
||||
|
||||
from .tool import DockerWrapper
|
103
langchain/utilities/docker/images.py
Normal file
103
langchain/utilities/docker/images.py
Normal file
@ -0,0 +1,103 @@
|
||||
"""This module defines template images and halpers for common docker images."""
|
||||
|
||||
from enum import Enum
|
||||
from typing import Optional, List, Type, Union
|
||||
from pydantic import BaseModel, Extra, validator
|
||||
|
||||
|
||||
|
||||
class BaseImage(BaseModel, extra=Extra.forbid):
|
||||
"""Base docker image template class."""
|
||||
tty: bool = False
|
||||
stdin_open: bool = True
|
||||
name: str
|
||||
tag: Optional[str] = 'latest'
|
||||
default_command: Optional[List[str]] = None
|
||||
stdin_command: Optional[List[str]] = None
|
||||
network: str = 'none'
|
||||
|
||||
def dict(self, *args, **kwargs):
|
||||
"""Override the dict method to add the image name."""
|
||||
d = super().dict(*args, **kwargs)
|
||||
del d['name']
|
||||
del d['tag']
|
||||
d['image'] = self.image_name
|
||||
return d
|
||||
|
||||
@property
|
||||
def image_name(self) -> str:
|
||||
"""Image name."""
|
||||
return f'{self.name}:{self.tag}'
|
||||
|
||||
|
||||
|
||||
class ShellTypes(str, Enum):
|
||||
"""Enum class for shell types."""
|
||||
bash = '/bin/bash'
|
||||
sh = '/bin/sh'
|
||||
zsh = '/bin/zsh'
|
||||
|
||||
|
||||
class Shell(BaseImage):
|
||||
"""Shell image focused on running shell commands.
|
||||
|
||||
A shell image can be crated by passing a shell alias such as `sh` or `bash`
|
||||
or by passing the full path to the shell binary.
|
||||
"""
|
||||
name: str = 'alpine'
|
||||
default_command: List[str] = [ShellTypes.sh.value, '-c']
|
||||
stdin_command: List[str] = [ShellTypes.sh.value, '-i']
|
||||
|
||||
@validator('default_command')
|
||||
def validate_default_command(cls, value: str) -> str:
|
||||
"""Validate shell type."""
|
||||
val = getattr(ShellTypes, value, None)
|
||||
if val:
|
||||
return val.value
|
||||
return value
|
||||
|
||||
@validator('stdin_command')
|
||||
def validate_stdin_command(cls, value: str) -> str:
|
||||
"""Validate shell type."""
|
||||
val = getattr(ShellTypes, value, None)
|
||||
if val:
|
||||
return val.value
|
||||
return value
|
||||
|
||||
# example using base image to construct python image
|
||||
class Python(BaseImage):
|
||||
"""Python image class.
|
||||
|
||||
The python image needs to be launced using the `python3 -i` command to keep
|
||||
stdin open.
|
||||
"""
|
||||
name: str = 'python'
|
||||
default_command: List[str] = ['python3', '-c']
|
||||
stdin_command: List[str] = ['python3', '-iq']
|
||||
|
||||
|
||||
def get_image_template(image_name: str = 'shell') -> Union[str, Type[BaseImage]]:
|
||||
"""Helper to get an image template from a string.
|
||||
|
||||
It tries to find a class with the same name as the image name and returns the
|
||||
class. If no class is found, it returns the image name.
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> image = get_image_template('python')
|
||||
>>> assert type(image) == Python
|
||||
"""
|
||||
import importlib
|
||||
import inspect
|
||||
|
||||
classes = inspect.getmembers(importlib.import_module(__name__),
|
||||
lambda x: inspect.isclass(x) and x.__name__ == image_name.capitalize()
|
||||
)
|
||||
|
||||
if classes:
|
||||
cls = classes[0][1]
|
||||
return cls
|
||||
else:
|
||||
return image_name
|
||||
|
110
langchain/utilities/docker/socket_io.py
Normal file
110
langchain/utilities/docker/socket_io.py
Normal file
@ -0,0 +1,110 @@
|
||||
"""Low level socket IO for docker API."""
|
||||
import struct
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SOCK_BUF_SIZE = 1024
|
||||
|
||||
class DockerSocket:
|
||||
"""Wrapper around docker API's socket object. Can be used as a context manager."""
|
||||
|
||||
_timeout: int = 5
|
||||
|
||||
|
||||
def __init__(self, socket, timeout: int = _timeout):
|
||||
self.socket = socket
|
||||
self.socket._sock.settimeout(timeout)
|
||||
# self.socket._sock.setblocking(False)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.close()
|
||||
|
||||
def close(self):
|
||||
logger.debug("closing socket...")
|
||||
self.socket._sock.shutdown(2) # 2 = SHUT_RDWR
|
||||
self.socket._sock.close()
|
||||
self.socket.close()
|
||||
|
||||
def sendall(self, data: bytes) -> None:
|
||||
self.socket._sock.sendall(data)
|
||||
|
||||
def setblocking(self, flag: bool) -> None:
|
||||
self.socket._sock.setblocking(flag)
|
||||
|
||||
def recv(self) -> Any:
|
||||
"""Wrapper for socket.recv that does buffured read."""
|
||||
|
||||
# NOTE: this is optional as a bonus
|
||||
# TODO: Recv with TTY enabled
|
||||
#
|
||||
# When the TTY setting is enabled in POST /containers/create, the stream
|
||||
# is not multiplexed. The data exchanged over the hijacked connection is
|
||||
# simply the raw data from the process PTY and client's stdin.
|
||||
|
||||
# header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}
|
||||
# STREAM_TYPE can be:
|
||||
#
|
||||
# 0: stdin (is written on stdout)
|
||||
# 1: stdout
|
||||
# 2: stderr
|
||||
# SIZE1, SIZE2, SIZE3, SIZE4 are the four bytes of the uint32 size encoded as
|
||||
# big endian.
|
||||
#
|
||||
# Following the header is the payload, which is the specified number of bytes of
|
||||
# STREAM_TYPE.
|
||||
#
|
||||
# The simplest way to implement this protocol is the following:
|
||||
#
|
||||
# - Read 8 bytes.
|
||||
# - Choose stdout or stderr depending on the first byte.
|
||||
# - Extract the frame size from the last four bytes.
|
||||
# - Read the extracted size and output it on the correct output.
|
||||
# - Goto 1.
|
||||
|
||||
chunks = []
|
||||
# try:
|
||||
# self.socket._sock.recv(8)
|
||||
# except BlockingIOError as e:
|
||||
# raise ValueError("incomplete read from container output")
|
||||
|
||||
while True:
|
||||
header = b''
|
||||
try:
|
||||
# strip the header
|
||||
# the first recv is blocking to wait for the container to start
|
||||
header = self.socket._sock.recv(8)
|
||||
except BlockingIOError:
|
||||
# logger.debug("[header] blocking IO")
|
||||
break
|
||||
|
||||
self.socket._sock.setblocking(False)
|
||||
|
||||
if header == b'':
|
||||
break
|
||||
stream_type, size = struct.unpack("!BxxxI", header)
|
||||
|
||||
payload = b''
|
||||
while size:
|
||||
chunk = b''
|
||||
try:
|
||||
chunk = self.socket._sock.recv(min(size, SOCK_BUF_SIZE))
|
||||
except BlockingIOError:
|
||||
# logger.debug("[body] blocking IO")
|
||||
break
|
||||
if chunk == b'':
|
||||
raise ValueError("incomplete read from container output")
|
||||
payload += chunk
|
||||
size -= len(chunk)
|
||||
chunks.append((stream_type, payload))
|
||||
# try:
|
||||
# msg = self.socket._sock.recv(SOCK_BUF_SIZE)
|
||||
# chunk += msg
|
||||
# except BlockingIOError as e:
|
||||
# break
|
||||
|
||||
return chunks
|
449
langchain/utilities/docker/tool.py
Normal file
449
langchain/utilities/docker/tool.py
Normal file
@ -0,0 +1,449 @@
|
||||
# TODO!: using pexpect to with containers
|
||||
# TODO: add default expect pattern to image template
|
||||
# TODO: pass max reads parameters for read trials
|
||||
# NOTE: spawning with tty true or not gives slightly different stdout format
|
||||
# NOTE: echo=False works when tty is disabled and only stdin is connected
|
||||
|
||||
import shlex
|
||||
import os
|
||||
import io
|
||||
import tarfile
|
||||
import time
|
||||
import pandas as pd # type: ignore
|
||||
import docker
|
||||
import socket
|
||||
|
||||
from typing import Any, Dict, Optional, Union, Type
|
||||
from pydantic import BaseModel, Extra, root_validator, Field
|
||||
from docker.errors import APIError, ContainerError # type: ignore
|
||||
|
||||
from .images import Shell, BaseImage, get_image_template
|
||||
from . import gvisor_runtime_available
|
||||
from .socket_io import DockerSocket
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_default_params = {
|
||||
# the only required parameter to be able to attach.
|
||||
'stdin_open': True,
|
||||
}
|
||||
|
||||
|
||||
def _get_command(query: str, **kwargs: Dict) -> str:
|
||||
"""Build an escaped command from a query string and keyword arguments."""
|
||||
cmd = query
|
||||
if 'default_command' in kwargs:
|
||||
cmd = shlex.join([*kwargs.get('default_command'), query]) # type: ignore
|
||||
|
||||
return cmd
|
||||
|
||||
|
||||
class DockerWrapper(BaseModel, extra=Extra.allow):
|
||||
"""Executes arbitrary commands or payloads on containers and returns the output.
|
||||
|
||||
Args:
|
||||
image (str | Type[BaseImage]): Docker image to use for execution. The
|
||||
image can be a string or a subclass of images.BaseImage.
|
||||
default_command (List[str]): Default command to use when creating the container.
|
||||
"""
|
||||
|
||||
_docker_client: docker.DockerClient = None # type: ignore
|
||||
_params: Dict = Field(default_factory=Shell().dict(), skip=True)
|
||||
image: Union[str, Type[BaseImage]] = Field(default_factory=Shell, skip=True)
|
||||
from_env: Optional[bool] = Field(default=True, skip=True)
|
||||
|
||||
# @property
|
||||
# def image_name(self) -> str:
|
||||
# """The image name that will be used when creating a container."""
|
||||
# return self._params.image
|
||||
#
|
||||
def __init__(self, **kwargs):
|
||||
"""Initialize docker client."""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
if self.from_env:
|
||||
self._docker_client = docker.from_env()
|
||||
if gvisor_runtime_available(docker.from_env()):
|
||||
self._params['runtime'] = 'runsc'
|
||||
|
||||
# if not isinstance(self.image, str) and issubclass(self.image, BaseImage):
|
||||
# self._params = {**self._params, **self.image().dict()}
|
||||
#
|
||||
# # if the user defined a custom image not pre registerd already we should
|
||||
# # not use the custom command
|
||||
# elif isinstance(self.image, str):
|
||||
# self._params = {**_default_params(), **{'image': self.image}}
|
||||
|
||||
@property
|
||||
def client(self) -> docker.DockerClient: # type: ignore
|
||||
"""Docker client."""
|
||||
return self._docker_client
|
||||
|
||||
@property
|
||||
def info(self) -> Any:
|
||||
"""Prints docker `info`."""
|
||||
return self._docker_client.info()
|
||||
|
||||
# @validator("image", pre=True, always=True)
|
||||
# def validate_image(cls, value):
|
||||
# if value is None:
|
||||
# raise ValueError("image is required")
|
||||
# if isinstance(value, str) :
|
||||
# image = get_image(value)
|
||||
# if isinstance(image, BaseImage):
|
||||
# return image
|
||||
# else:
|
||||
# #set default params to base ones
|
||||
# if issubclass(value, BaseImage):
|
||||
# return value
|
||||
# else:
|
||||
# raise ValueError("image must be a string or a subclass of images.BaseImage")
|
||||
|
||||
@root_validator()
|
||||
def validate_all(cls, values: Dict) -> Dict:
|
||||
"""Validate environment."""
|
||||
image = values.get("image")
|
||||
if image is None:
|
||||
raise ValueError("image is required")
|
||||
if isinstance(image, str):
|
||||
# try to get image
|
||||
_image = get_image_template(image)
|
||||
if isinstance(_image, str):
|
||||
# user wants a custom image, we should use default params
|
||||
values["_params"] = {**_default_params, **{'image': image}}
|
||||
else:
|
||||
# user wants a pre registered image, we should use the image params
|
||||
values["_params"] = _image().dict()
|
||||
# image is a BaseImage class
|
||||
elif issubclass(image.__class__, BaseImage):
|
||||
values["_params"] = image.dict()
|
||||
|
||||
|
||||
def field_filter(x):
|
||||
fields = cls.__fields__
|
||||
if x[0] == '_params':
|
||||
return False
|
||||
field = fields.get(x[0], None)
|
||||
if not field:
|
||||
return True
|
||||
return not field.field_info.extra.get('skip', False)
|
||||
filtered_fields: Dict[Any, Any] = dict(filter(field_filter, values.items())) # type: ignore
|
||||
values["_params"] = {**values["_params"],
|
||||
**filtered_fields}
|
||||
|
||||
return values
|
||||
|
||||
def _clean_kwargs(self, kwargs: dict) -> dict:
|
||||
kwargs.pop('default_command', None)
|
||||
kwargs.pop('stdin_command', None)
|
||||
return kwargs
|
||||
|
||||
|
||||
|
||||
#FIX: default shell command should be different in run vs exec mode
|
||||
def run(self, query: str, **kwargs: Any) -> str:
|
||||
"""Run arbitrary shell command inside a container.
|
||||
|
||||
This method will concatenate the registered default command with the provided
|
||||
query.
|
||||
|
||||
Args:
|
||||
query (str): The command to run.
|
||||
**kwargs: Pass extra parameters to DockerClient.container.run.
|
||||
|
||||
"""
|
||||
kwargs = {**self._params, **kwargs}
|
||||
args = {
|
||||
'image': self._params.get('image'),
|
||||
'command': query,
|
||||
}
|
||||
|
||||
del kwargs['image']
|
||||
cmd = _get_command(query, **kwargs)
|
||||
self._clean_kwargs(kwargs)
|
||||
|
||||
args['command'] = cmd
|
||||
# print(f"args: {args}")
|
||||
# print(f"kwargs: {kwargs}")
|
||||
# return
|
||||
logger.debug(f"running command {args['command']}")
|
||||
logger.debug(f"with params {kwargs}")
|
||||
try:
|
||||
result = self._docker_client.containers.run(*(args.values()),
|
||||
remove=True,
|
||||
**kwargs)
|
||||
return result.decode('utf-8').strip()
|
||||
except ContainerError as e:
|
||||
return f"STDERR: {e}"
|
||||
|
||||
# TODO: handle docker APIError ?
|
||||
except APIError as e:
|
||||
logger.debug(f"APIError: {e}")
|
||||
return "ERROR"
|
||||
|
||||
def _flush_prompt(self, _socket):
|
||||
flush = _socket.recv()
|
||||
_socket.setblocking(True)
|
||||
logger.debug(f"flushed output: {flush}")
|
||||
|
||||
def _massage_output_streams(self, output):
|
||||
df = pd.DataFrame(output, columns=['stream_type', 'payload'])
|
||||
df['payload'] = df['payload'].apply(lambda x: x.decode('utf-8'))
|
||||
df['stream_type'] = df['stream_type'].apply(
|
||||
lambda x: 'stdout' if x == 1 else 'stderr')
|
||||
payload = df.groupby('stream_type')['payload'].apply(''.join).to_dict()
|
||||
logger.debug(f"payload: {payload}")
|
||||
return payload
|
||||
|
||||
|
||||
# TODO: document dif between run and exec_run
|
||||
def exec_run(self, query: str, timeout: int = 5,
|
||||
delay: float = 0.5,
|
||||
with_stderr: bool = False,
|
||||
flush_prompt: bool = False,
|
||||
**kwargs: Any) -> str:
|
||||
"""Run a shell command inside an ephemeral container.
|
||||
|
||||
This will create a container, run the command, and then remove the
|
||||
container. the input is sent to the container's stdin through a socket
|
||||
using Docker API. It effectively simulates a tty session.
|
||||
|
||||
Args:
|
||||
query (str): The command to execute.
|
||||
timeout (int): The timeout for receiving from the attached stdin.
|
||||
delay (float): The delay in seconds before running the command.
|
||||
with_stderr (bool): If True, the stderr will be included in the output
|
||||
flush_prompt (bool): If True, the prompt will be flushed before running the command.
|
||||
**kwargs: Pass extra parameters to DockerClient.container.exec_run.
|
||||
"""
|
||||
# it is necessary to open stdin to keep the container running after it's started
|
||||
# the attach_socket will hold the connection open until the container is stopped or
|
||||
# the socket is closed.
|
||||
|
||||
# NOTE: using tty=True to be able to simulate a tty session.
|
||||
|
||||
# NOTE: some images like python need to be launched with custom
|
||||
# parameters to keep stdin open. For example python image needs to be
|
||||
# started with the command `python3 -i`
|
||||
|
||||
# remove local variables from kwargs
|
||||
for arg in kwargs.keys():
|
||||
if arg in locals():
|
||||
del kwargs[arg]
|
||||
|
||||
|
||||
kwargs = {**self._params, **kwargs}
|
||||
kwargs = self._clean_kwargs(kwargs)
|
||||
|
||||
# exec_run requires flags for stdin so we use `stdin_command` as
|
||||
# a default command for creating the container
|
||||
if 'stdin_command' in kwargs:
|
||||
assert isinstance(kwargs['stdin_command'], list)
|
||||
kwargs['command'] = shlex.join(kwargs['stdin_command'])
|
||||
del kwargs['stdin_command']
|
||||
|
||||
# kwargs.pop('default_command', None)
|
||||
# kwargs['command'] = cmd
|
||||
|
||||
# print(f"kwargs: {kwargs}")
|
||||
# return
|
||||
|
||||
# TODO: handle both output mode for tty=True/False
|
||||
logger.debug(f"creating container with params {kwargs}")
|
||||
|
||||
container = self._docker_client.containers.create(**kwargs)
|
||||
container.start()
|
||||
|
||||
# get underlying socket
|
||||
# important to set 'stream' or attach API does not work
|
||||
_socket = container.attach_socket(params={'stdout': 1, 'stderr': 1,
|
||||
'stdin': 1, 'stream': 1})
|
||||
|
||||
|
||||
# input()
|
||||
with DockerSocket(_socket, timeout=timeout) as _socket:
|
||||
# flush the output buffer (if any prompt)
|
||||
if flush_prompt:
|
||||
self._flush_prompt(_socket)
|
||||
|
||||
# TEST: make sure the container is ready ? use a blocking first call
|
||||
raw_input = f"{query}\n".encode('utf-8')
|
||||
_socket.sendall(raw_input)
|
||||
|
||||
#NOTE: delay ensures that the command is executed after the input is sent
|
||||
time.sleep(delay) #this should be available as a parameter
|
||||
|
||||
try:
|
||||
output = _socket.recv()
|
||||
except socket.timeout:
|
||||
return "ERROR: timeout"
|
||||
|
||||
|
||||
try:
|
||||
container.kill()
|
||||
except APIError:
|
||||
pass
|
||||
container.remove(force=True)
|
||||
|
||||
if output is None:
|
||||
logger.warning("no output")
|
||||
return "ERROR"
|
||||
|
||||
# output is stored in a list of tuples (stream_type, payload)
|
||||
payload = self._massage_output_streams(output)
|
||||
|
||||
|
||||
#NOTE: stderr might contain only the prompt
|
||||
if 'stdout' in payload and 'stderr' in payload and with_stderr:
|
||||
return f"STDOUT:\n {payload['stdout'].strip()}\nSTDERR:\n {payload['stderr']}"
|
||||
elif 'stderr' in payload and not 'stdout' in payload:
|
||||
return f"STDERR: {payload['stderr']}"
|
||||
else:
|
||||
return payload['stdout'].strip()
|
||||
|
||||
|
||||
def exec_attached(self, query: str, container: str,
|
||||
delay: float = 0.5,
|
||||
timeout: int = 5,
|
||||
with_stderr: bool = False,
|
||||
flush_prompt: bool = False,
|
||||
**kwargs: Any) -> str:
|
||||
"""Attach to container and exec query on it.
|
||||
|
||||
This method is very similary to exec_run. It only differs in that it attaches to
|
||||
an already specifed container instead of creating a new one for each query.
|
||||
|
||||
Args:
|
||||
query (str): The command to execute.
|
||||
container (str): The container to attach to.
|
||||
timeout (int): The timeout for receiving from the attached stdin.
|
||||
delay (float): The delay in seconds before running the command.
|
||||
with_stderr (bool): If True, the stderr will be included in the output
|
||||
flush_prompt (bool): If True, the prompt will be flushed before running the command.
|
||||
**kwargs: Pass extra parameters to DockerClient.container.exec_run.
|
||||
|
||||
"""
|
||||
|
||||
# remove local variables from kwargs
|
||||
for arg in kwargs.keys():
|
||||
if arg in locals():
|
||||
del kwargs[arg]
|
||||
|
||||
|
||||
kwargs = {**self._params, **kwargs}
|
||||
kwargs = self._clean_kwargs(kwargs)
|
||||
|
||||
logger.debug(f"attaching to container {container} with params {kwargs}")
|
||||
|
||||
try:
|
||||
_container = self._docker_client.containers.get(container)
|
||||
except Exception as e:
|
||||
logger.error(f"container {container}: {e}")
|
||||
return "ERROR"
|
||||
|
||||
_socket = _container.attach_socket(params={'stdout': 1, 'stderr': 1,
|
||||
'stdin': 1, 'stream': 1})
|
||||
|
||||
|
||||
with DockerSocket(_socket, timeout=timeout) as _socket:
|
||||
# flush the output buffer (if any prompt)
|
||||
if flush_prompt:
|
||||
self._flush_prompt(_socket)
|
||||
|
||||
raw_input = f"{query}\n".encode('utf-8')
|
||||
_socket.sendall(raw_input)
|
||||
|
||||
#NOTE: delay ensures that the command is executed after the input is sent
|
||||
time.sleep(delay) #this should be available as a parameter
|
||||
|
||||
try:
|
||||
output = _socket.recv()
|
||||
except socket.timeout:
|
||||
return "ERROR: timeout"
|
||||
|
||||
if output is None:
|
||||
logger.warning("no output")
|
||||
return "ERROR"
|
||||
|
||||
payload = self._massage_output_streams(output)
|
||||
print(payload)
|
||||
|
||||
#NOTE: stderr might contain only the prompt
|
||||
if 'stdout' in payload and 'stderr' in payload and with_stderr:
|
||||
return f"STDOUT:\n {payload['stdout'].strip()}\nSTDERR:\n {payload['stderr']}"
|
||||
elif 'stderr' in payload and not 'stdout' in payload:
|
||||
return f"STDERR: {payload['stderr']}"
|
||||
else:
|
||||
return payload['stdout'].strip()
|
||||
|
||||
|
||||
|
||||
#WIP method that will copy the given payload to the container filesystem then
|
||||
# invoke the command on the file and return the output
|
||||
def run_file(self, payload: bytes, filename: Optional[str] = None,
|
||||
**kwargs: Any) -> str:
|
||||
"""Run arbitrary shell command inside an ephemeral container on the
|
||||
specified input payload."""
|
||||
|
||||
|
||||
for arg in kwargs.keys():
|
||||
if arg in locals():
|
||||
del kwargs[arg]
|
||||
|
||||
kwargs = {**self._params, **kwargs}
|
||||
self._clean_kwargs(kwargs)
|
||||
|
||||
kwargs['command'] = '/bin/sh'
|
||||
|
||||
k_file_location = '/tmp/payload'
|
||||
if filename is not None:
|
||||
# store at /tmp/file_name
|
||||
# strip all leading path components
|
||||
file_loc = os.path.basename(filename)
|
||||
k_file_location = f'/tmp/{file_loc}'
|
||||
|
||||
# print(kwargs)
|
||||
# return
|
||||
|
||||
# create a container with the given payload
|
||||
# container = self._docker_client.containers.create(**kwargs)
|
||||
# container.start()
|
||||
container = self._docker_client.containers.list()[0]
|
||||
print(container.short_id)
|
||||
|
||||
|
||||
# copy the payload to the container
|
||||
try:
|
||||
# put the data in tar archive at the path specified by k_file_location
|
||||
archive = io.BytesIO()
|
||||
with tarfile.TarFile(fileobj=archive, mode='w') as tar:
|
||||
tarinfo = tarfile.TarInfo(name='test-archive')
|
||||
tarinfo.size = len(payload)
|
||||
tarinfo.mtime = int(time.time())
|
||||
tar.addfile(tarinfo, io.BytesIO(payload))
|
||||
archive.seek(0)
|
||||
|
||||
# store archive on local host at /tmp/test
|
||||
# with open('/tmp/test', 'wb') as f:
|
||||
# f.write(archive.read())
|
||||
|
||||
|
||||
container.put_archive(path='/', data=archive)
|
||||
except APIError as e:
|
||||
logger.error(f"Error: {e}")
|
||||
return "ERROR"
|
||||
|
||||
#execute the command
|
||||
exit_code, out = container.exec_run(['sh', k_file_location])
|
||||
print(f"exit_code: {exit_code}")
|
||||
print(f"out: {out}")
|
||||
|
||||
|
||||
# try:
|
||||
# container.kill()
|
||||
# except APIError:
|
||||
# pass
|
||||
# container.remove(force=True)
|
||||
|
||||
return ""
|
33
poetry.lock
generated
33
poetry.lock
generated
@ -1140,6 +1140,28 @@ idna = ["idna (>=2.1,<4.0)"]
|
||||
trio = ["trio (>=0.14,<0.23)"]
|
||||
wmi = ["wmi (>=1.5.1,<2.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "docker"
|
||||
version = "6.0.1"
|
||||
description = "A Python library for the Docker Engine API."
|
||||
category = "main"
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "docker-6.0.1-py3-none-any.whl", hash = "sha256:dbcb3bd2fa80dca0788ed908218bf43972772009b881ed1e20dfc29a65e49782"},
|
||||
{file = "docker-6.0.1.tar.gz", hash = "sha256:896c4282e5c7af5c45e8b683b0b0c33932974fe6e50fc6906a0a83616ab3da97"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
packaging = ">=14.0"
|
||||
pywin32 = {version = ">=304", markers = "sys_platform == \"win32\""}
|
||||
requests = ">=2.26.0"
|
||||
urllib3 = ">=1.26.0"
|
||||
websocket-client = ">=0.32.0"
|
||||
|
||||
[package.extras]
|
||||
ssh = ["paramiko (>=2.4.3)"]
|
||||
|
||||
[[package]]
|
||||
name = "docutils"
|
||||
version = "0.17.1"
|
||||
@ -4851,7 +4873,7 @@ files = [
|
||||
name = "pywin32"
|
||||
version = "305"
|
||||
description = "Python for Window Extensions"
|
||||
category = "dev"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
@ -6059,7 +6081,7 @@ files = [
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"}
|
||||
greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and platform_machine == \"aarch64\" or python_version >= \"3\" and platform_machine == \"ppc64le\" or python_version >= \"3\" and platform_machine == \"x86_64\" or python_version >= \"3\" and platform_machine == \"amd64\" or python_version >= \"3\" and platform_machine == \"AMD64\" or python_version >= \"3\" and platform_machine == \"win32\" or python_version >= \"3\" and platform_machine == \"WIN32\""}
|
||||
|
||||
[package.extras]
|
||||
aiomysql = ["aiomysql", "greenlet (!=0.4.17)"]
|
||||
@ -7183,7 +7205,7 @@ files = [
|
||||
name = "websocket-client"
|
||||
version = "1.5.1"
|
||||
description = "WebSocket client for Python with low level API options"
|
||||
category = "dev"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
@ -7498,10 +7520,11 @@ docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker
|
||||
testing = ["flake8 (<5)", "func-timeout", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"]
|
||||
|
||||
[extras]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic"]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "docker"]
|
||||
docker = ["docker"]
|
||||
llms = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
content-hash = "449d9958004f9b0af5667b02f866313913f9bd9c939870898873c0e3198a9cb4"
|
||||
content-hash = "e817b6b0f985c4178f4cd1bc5bea92130e79092e5fff0d41a03a5dbcfe1047cd"
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "langchain"
|
||||
version = "0.0.95"
|
||||
version = "0.0.96"
|
||||
description = "Building applications with LLMs through composability"
|
||||
authors = []
|
||||
license = "MIT"
|
||||
@ -51,6 +51,7 @@ pypdf = {version = "^3.4.0", optional = true}
|
||||
networkx = {version="^2.6.3", optional = true}
|
||||
aleph-alpha-client = {version="^2.15.0", optional = true}
|
||||
deeplake = {version = "^3.2.9", optional = true}
|
||||
docker = {version = "^6.0.1", optional = true}
|
||||
|
||||
[tool.poetry.group.docs.dependencies]
|
||||
autodoc_pydantic = "^1.8.0"
|
||||
@ -95,8 +96,9 @@ jupyter = "^1.0.0"
|
||||
playwright = "^1.28.0"
|
||||
|
||||
[tool.poetry.extras]
|
||||
docker = ["docker"]
|
||||
llms = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic"]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "docker"]
|
||||
|
||||
[tool.ruff]
|
||||
select = [
|
||||
|
1
tests/integration_tests/document_loaders/__init__.py
Normal file
1
tests/integration_tests/document_loaders/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
"""Test document loader integrations."""
|
37
tests/integration_tests/document_loaders/test_ifixit.py
Normal file
37
tests/integration_tests/document_loaders/test_ifixit.py
Normal file
@ -0,0 +1,37 @@
|
||||
from langchain.document_loaders.ifixit import IFixitLoader
|
||||
|
||||
|
||||
def test_ifixit_loader() -> None:
|
||||
"""Test iFixit loader."""
|
||||
web_path = "https://www.ifixit.com/Guide/iPad+9+Battery+Replacement/151279"
|
||||
loader = IFixitLoader(web_path)
|
||||
assert loader.page_type == "Guide"
|
||||
assert loader.id == "151279"
|
||||
assert loader.web_path == web_path
|
||||
|
||||
|
||||
def test_ifixit_loader_teardown() -> None:
|
||||
web_path = "https://www.ifixit.com/Teardown/Banana+Teardown/811"
|
||||
loader = IFixitLoader(web_path)
|
||||
""" Teardowns are just guides by a different name """
|
||||
assert loader.page_type == "Guide"
|
||||
assert loader.id == "811"
|
||||
|
||||
|
||||
def test_ifixit_loader_device() -> None:
|
||||
web_path = "https://www.ifixit.com/Device/Standard_iPad"
|
||||
loader = IFixitLoader(web_path)
|
||||
""" Teardowns are just guides by a different name """
|
||||
assert loader.page_type == "Device"
|
||||
assert loader.id == "Standard_iPad"
|
||||
|
||||
|
||||
def test_ifixit_loader_answers() -> None:
|
||||
web_path = (
|
||||
"https://www.ifixit.com/Answers/View/318583/My+iPhone+6+is+typing+and+"
|
||||
"opening+apps+by+itself"
|
||||
)
|
||||
loader = IFixitLoader(web_path)
|
||||
|
||||
assert loader.page_type == "Answers"
|
||||
assert loader.id == "318583"
|
@ -85,3 +85,92 @@ def test_few_shot_functionality() -> None:
|
||||
"Now you try to talk about party."
|
||||
)
|
||||
assert output == expected_output
|
||||
|
||||
|
||||
def test_partial_init_string() -> None:
|
||||
"""Test prompt can be initialized with partial variables."""
|
||||
prefix = "This is a test about {content}."
|
||||
suffix = "Now you try to talk about {new_content}."
|
||||
examples = [
|
||||
{"question": "foo", "answer": "bar"},
|
||||
{"question": "baz", "answer": "foo"},
|
||||
]
|
||||
prompt = FewShotPromptTemplate(
|
||||
suffix=suffix,
|
||||
prefix=prefix,
|
||||
input_variables=["new_content"],
|
||||
partial_variables={"content": "animals"},
|
||||
examples=examples,
|
||||
example_prompt=EXAMPLE_PROMPT,
|
||||
example_separator="\n",
|
||||
)
|
||||
output = prompt.format(new_content="party")
|
||||
expected_output = (
|
||||
"This is a test about animals.\n"
|
||||
"foo: bar\n"
|
||||
"baz: foo\n"
|
||||
"Now you try to talk about party."
|
||||
)
|
||||
assert output == expected_output
|
||||
|
||||
|
||||
def test_partial_init_func() -> None:
|
||||
"""Test prompt can be initialized with partial variables."""
|
||||
prefix = "This is a test about {content}."
|
||||
suffix = "Now you try to talk about {new_content}."
|
||||
examples = [
|
||||
{"question": "foo", "answer": "bar"},
|
||||
{"question": "baz", "answer": "foo"},
|
||||
]
|
||||
prompt = FewShotPromptTemplate(
|
||||
suffix=suffix,
|
||||
prefix=prefix,
|
||||
input_variables=["new_content"],
|
||||
partial_variables={"content": lambda: "animals"},
|
||||
examples=examples,
|
||||
example_prompt=EXAMPLE_PROMPT,
|
||||
example_separator="\n",
|
||||
)
|
||||
output = prompt.format(new_content="party")
|
||||
expected_output = (
|
||||
"This is a test about animals.\n"
|
||||
"foo: bar\n"
|
||||
"baz: foo\n"
|
||||
"Now you try to talk about party."
|
||||
)
|
||||
assert output == expected_output
|
||||
|
||||
|
||||
def test_partial() -> None:
|
||||
"""Test prompt can be partialed."""
|
||||
prefix = "This is a test about {content}."
|
||||
suffix = "Now you try to talk about {new_content}."
|
||||
examples = [
|
||||
{"question": "foo", "answer": "bar"},
|
||||
{"question": "baz", "answer": "foo"},
|
||||
]
|
||||
prompt = FewShotPromptTemplate(
|
||||
suffix=suffix,
|
||||
prefix=prefix,
|
||||
input_variables=["content", "new_content"],
|
||||
examples=examples,
|
||||
example_prompt=EXAMPLE_PROMPT,
|
||||
example_separator="\n",
|
||||
)
|
||||
new_prompt = prompt.partial(content="foo")
|
||||
new_output = new_prompt.format(new_content="party")
|
||||
expected_output = (
|
||||
"This is a test about foo.\n"
|
||||
"foo: bar\n"
|
||||
"baz: foo\n"
|
||||
"Now you try to talk about party."
|
||||
)
|
||||
assert new_output == expected_output
|
||||
output = prompt.format(new_content="party", content="bar")
|
||||
expected_output = (
|
||||
"This is a test about bar.\n"
|
||||
"foo: bar\n"
|
||||
"baz: foo\n"
|
||||
"Now you try to talk about party."
|
||||
)
|
||||
assert output == expected_output
|
||||
|
@ -108,3 +108,40 @@ def test_prompt_from_file() -> None:
|
||||
input_variables = ["question"]
|
||||
prompt = PromptTemplate.from_file(template_file, input_variables)
|
||||
assert prompt.template == "Question: {question}\nAnswer:"
|
||||
|
||||
|
||||
def test_partial_init_string() -> None:
|
||||
"""Test prompt can be initialized with partial variables."""
|
||||
template = "This is a {foo} test."
|
||||
prompt = PromptTemplate(
|
||||
input_variables=[], template=template, partial_variables={"foo": 1}
|
||||
)
|
||||
assert prompt.template == template
|
||||
assert prompt.input_variables == []
|
||||
result = prompt.format()
|
||||
assert result == "This is a 1 test."
|
||||
|
||||
|
||||
def test_partial_init_func() -> None:
|
||||
"""Test prompt can be initialized with partial variables."""
|
||||
template = "This is a {foo} test."
|
||||
prompt = PromptTemplate(
|
||||
input_variables=[], template=template, partial_variables={"foo": lambda: 2}
|
||||
)
|
||||
assert prompt.template == template
|
||||
assert prompt.input_variables == []
|
||||
result = prompt.format()
|
||||
assert result == "This is a 2 test."
|
||||
|
||||
|
||||
def test_partial() -> None:
|
||||
"""Test prompt can be partialed."""
|
||||
template = "This is a {foo} test."
|
||||
prompt = PromptTemplate(input_variables=["foo"], template=template)
|
||||
assert prompt.template == template
|
||||
assert prompt.input_variables == ["foo"]
|
||||
new_prompt = prompt.partial(foo="3")
|
||||
new_result = new_prompt.format()
|
||||
assert new_result == "This is a 3 test."
|
||||
result = prompt.format(foo="foo")
|
||||
assert result == "This is a foo test."
|
||||
|
129
tests/unit_tests/test_docker.py
Normal file
129
tests/unit_tests/test_docker.py
Normal file
@ -0,0 +1,129 @@
|
||||
"""Test the docker wrapper utility."""
|
||||
|
||||
import pytest
|
||||
import importlib
|
||||
from langchain.utilities.docker import gvisor_runtime_available
|
||||
from langchain.utilities.docker.tool import DockerWrapper, _default_params
|
||||
from unittest.mock import MagicMock
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
|
||||
def docker_installed() -> bool:
|
||||
"""Check if docker is installed locally."""
|
||||
try:
|
||||
subprocess.run(['which', 'docker',], check=True)
|
||||
except subprocess.CalledProcessError:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def gvisor_installed() -> bool:
|
||||
"""return true if gvisor local runtime is installed"""
|
||||
try:
|
||||
docker_lib = importlib.import_module('docker')
|
||||
client = docker_lib.from_env()
|
||||
return gvisor_runtime_available(client)
|
||||
except ImportError:
|
||||
return False
|
||||
|
||||
return False
|
||||
|
||||
|
||||
|
||||
def docker_lib_installed() -> bool:
|
||||
return importlib.util.find_spec('docker') is not None
|
||||
|
||||
|
||||
def skip_docker_tests() -> bool:
|
||||
return not docker_installed() or not docker_lib_installed()
|
||||
|
||||
|
||||
@pytest.mark.skipif(skip_docker_tests(), reason="docker not installed")
|
||||
class TestDockerUtility:
|
||||
|
||||
|
||||
def test_default_image(self) -> None:
|
||||
"""Test running a command with the default alpine image."""
|
||||
docker = DockerWrapper()
|
||||
output = docker.run('cat /etc/os-release')
|
||||
assert output.find('alpine')
|
||||
|
||||
def test_shell_escaping(self) -> None:
|
||||
docker = DockerWrapper()
|
||||
output = docker.run('echo "hello world" | sed "s/world/you/g"')
|
||||
assert output == 'hello you'
|
||||
# using embedded quotes
|
||||
output = docker.run("echo 'hello world' | awk '{print $2}'")
|
||||
assert output == 'world'
|
||||
|
||||
def test_auto_pull_image(self) -> None:
|
||||
docker = DockerWrapper(image='golang:1.20')
|
||||
output = docker.run("go version")
|
||||
assert output.find('go1.20')
|
||||
docker._docker_client.images.remove('golang:1.20')
|
||||
|
||||
def test_inner_failing_command(self) -> None:
|
||||
"""Test inner command with non zero exit"""
|
||||
docker = DockerWrapper()
|
||||
output = docker.run('ls /inner-failing-command')
|
||||
assert str(output).startswith("STDERR")
|
||||
|
||||
def test_entrypoint_failure(self) -> None:
|
||||
"""Test inner command with non zero exit"""
|
||||
docker = DockerWrapper()
|
||||
output = docker.run('todo handle APIError')
|
||||
assert str(output).startswith("STDERR") or str(output).startswith("ERROR")
|
||||
|
||||
def test_check_gvisor_runtime(self) -> None:
|
||||
"""test gVisor runtime verification using a mock docker client"""
|
||||
mock_client = MagicMock()
|
||||
mock_client.info.return_value = {'Runtimes': {'runsc': {'path': 'runsc'}}}
|
||||
assert gvisor_runtime_available(mock_client)
|
||||
mock_client.info.return_value = {'Runtimes': {'runc': {'path': 'runc'}}}
|
||||
assert not gvisor_runtime_available(mock_client)
|
||||
|
||||
def test_exec_attached(self) -> None:
|
||||
"""Test exec with attached mode."""
|
||||
# create a test container
|
||||
d = DockerWrapper()
|
||||
cont = d._docker_client.containers.run('alpine', '/bin/sh -s',
|
||||
detach=True,
|
||||
stdin_open=True)
|
||||
cont.start()
|
||||
# make sure the prompt is ready
|
||||
time.sleep(1)
|
||||
out = d.exec_attached("cat /etc/os-release", container=cont.id)
|
||||
assert out.find('alpine') != -1
|
||||
cont.kill()
|
||||
cont.remove(force=True)
|
||||
|
||||
|
||||
|
||||
|
||||
@pytest.mark.skipif(not gvisor_installed(), reason="gvisor not installed")
|
||||
def test_run_with_runtime_runsc(self) -> None:
|
||||
docker = DockerWrapper(image='shell')
|
||||
output = docker.run('dmesg')
|
||||
assert output.find('gVisor') != -1
|
||||
|
||||
|
||||
def test_socket_read_timeout(self) -> None:
|
||||
"""Test socket read timeout."""
|
||||
docker = DockerWrapper(image='python', default_command=['python'])
|
||||
# this query should fail as python needs to be started with python3 -i
|
||||
output = docker.exec_run("test query", timeout=1)
|
||||
assert output == "ERROR: timeout"
|
||||
|
||||
def test_get_image_template() -> None:
|
||||
"""Test getting an image template instance from string."""
|
||||
from langchain.utilities.docker.images import get_image_template
|
||||
image = get_image_template("python")
|
||||
assert image.__name__ == "Python" # type: ignore
|
||||
|
||||
#FIX: failing split in two tests: with and without gvisor
|
||||
def test_default_params() -> None:
|
||||
"""Test default container parameters."""
|
||||
docker = DockerWrapper(image="my_custom_image")
|
||||
assert docker._params == {**_default_params, "image": "my_custom_image"}
|
Loading…
Reference in New Issue
Block a user