**Problem statement:** the
[document_loaders](https://python.langchain.com/en/latest/modules/indexes/document_loaders.html#)
section is too long and hard to comprehend.
**Proposal:** group document_loaders by 3 classes: (see `Files changed`
tab)
UPDATE: I've completely reworked the document_loader classification.
Now this PR changes only one file!
FYI @eyurtsev @hwchase17
[Text Generation
Inference](https://github.com/huggingface/text-generation-inference) is
a Rust, Python and gRPC server for generating text using LLMs.
This pull request add support for self hosted Text Generation Inference
servers.
feature: #4280
---------
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Rebased Mahmedk's PR with the callback refactor and added the example
requested by hwchase plus a couple minor fixes
---------
Co-authored-by: Ahmed K <77802633+mahmedk@users.noreply.github.com>
Co-authored-by: Ahmed K <mda3k27@gmail.com>
Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
We're fans of the LangChain framework thus we wanted to make sure we
provide an easy way for our customers to be able to utilize this
framework for their LLM-powered applications at our platform.
# Add option to `load_huggingface_tool`
Expose a method to load a huggingface Tool from the HF hub
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Thanks to @anna-charlotte and @jupyterjazz for the contribution! Made
few small changes to get it across the finish line
---------
Signed-off-by: anna-charlotte <charlotte.gerhaher@jina.ai>
Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
Co-authored-by: anna-charlotte <charlotte.gerhaher@jina.ai>
Co-authored-by: jupyterjazz <saba.sturua@jina.ai>
Co-authored-by: Saba Sturua <45267439+jupyterjazz@users.noreply.github.com>
# ODF File Loader
Adds a data loader for handling Open Office ODT files. Requires
`unstructured>=0.6.3`.
### Testing
The following should work using the `fake.odt` example doc from the
[`unstructured` repo](https://github.com/Unstructured-IO/unstructured).
```python
from langchain.document_loaders import UnstructuredODTLoader
loader = UnstructuredODTLoader(file_path="fake.odt", mode="elements")
loader.load()
loader = UnstructuredODTLoader(file_path="fake.odt", mode="single")
loader.load()
```
- added `Wikipedia` retriever. It is effectively a wrapper for
`WikipediaAPIWrapper`. It wrapps load() into get_relevant_documents()
- sorted `__all__` in the `retrievers/__init__`
- added integration tests for the WikipediaRetriever
- added an example (as Jupyter notebook) for the WikipediaRetriever
# Minor Wording Documentation Change
```python
agent_chain.run("When's my friend Eric's surname?")
# Answer with 'Zhu'
```
is change to
```python
agent_chain.run("What's my friend Eric's surname?")
# Answer with 'Zhu'
```
I think when is a residual of the old query that was "When’s my friends
Eric`s birthday?".
# Fix grammar in Text Splitters docs
Just a small fix of grammar in the documentation:
"That means there two different axes" -> "That means there are two
different axes"
Related: #4028, I opened a new PR because (1) I was unable to unstage
mistakenly committed files (I'm not familiar with git enough to resolve
this issue), (2) I felt closing the original PR and opening a new PR
would be more appropriate if I changed the class name.
This PR creates HumanInputLLM(HumanLLM in #4028), a simple LLM wrapper
class that returns user input as the response. I also added a simple
Jupyter notebook regarding how and why to use this LLM wrapper. In the
notebook, I went over how to use this LLM wrapper and showed example of
testing `WikipediaQueryRun` using HumanInputLLM.
I believe this LLM wrapper will be useful especially for debugging,
educational or testing purpose.
- Added the `Wikipedia` document loader. It is based on the existing
`unilities/WikipediaAPIWrapper`
- Added a respective ut-s and example notebook
- Sorted list of classes in __init__
- made notebooks consistent: titles, service/format descriptions.
- corrected short names to full names, for example, `Word` -> `Microsoft
Word`
- added missed descriptions
- renamed notebook files to make ToC correctly sorted
This implements a loader of text passages in JSON format. The `jq`
syntax is used to define a schema for accessing the relevant contents
from the JSON file. This requires dependency on the `jq` package:
https://pypi.org/project/jq/.
---------
Signed-off-by: Aivin V. Solatorio <avsolatorio@gmail.com>
In the example for creating a Python REPL tool under the Agent module,
the ".run" was omitted in the example. I believe this is required when
defining a Tool.
In the section `Get Message Completions from a Chat Model` of the quick
start guide, the HumanMessage doesn't need to include `Translate this
sentence from English to French.` when there is a system message.
Simplify HumanMessages in these examples can further demonstrate the
power of LLM.
* implemented arun, results, and aresults. Reuses aiosession if
available.
* helper tools GoogleSerperRun and GoogleSerperResults
* support for Google Images, Places and News (examples given) and
filtering based on time (e.g. past hour)
* updated docs
Google Scholar outputs a nice list of scientific and research articles
that use LangChain.
I added a link to the Google Scholar page to the `gallery` doc page
Single edit to: models/text_embedding/examples/openai.ipynb - Line 88:
changed from: "embeddings = OpenAIEmbeddings(model_name=\"ada\")" to
"embeddings = OpenAIEmbeddings()" as model_name is no longer part of the
OpenAIEmbeddings class.
Seems the pyllamacpp package is no longer the supported bindings from
gpt4all. Tested that this works locally.
Given that the older models weren't very performant, I think it's better
to migrate now without trying to include a lot of try / except blocks
---------
Co-authored-by: Nissan Pow <npow@users.noreply.github.com>
Co-authored-by: Nissan Pow <pownissa@amazon.com>
### Summary
Adds `UnstructuredAPIFileLoaders` and `UnstructuredAPIFIleIOLoaders`
that partition documents through the Unstructured API. Defaults to the
URL for hosted Unstructured API, but can switch to a self hosted or
locally running API using the `url` kwarg. Currently, the Unstructured
API is open and does not require an API, but it will soon. A note was
added about that to the Unstructured ecosystem page.
### Testing
```python
from langchain.document_loaders import UnstructuredAPIFileIOLoader
filename = "fake-email.eml"
with open(filename, "rb") as f:
loader = UnstructuredAPIFileIOLoader(file=f, file_filename=filename)
docs = loader.load()
docs[0]
```
```python
from langchain.document_loaders import UnstructuredAPIFileLoader
filename = "fake-email.eml"
loader = UnstructuredAPIFileLoader(file_path=filename, mode="elements")
docs = loader.load()
docs[0]
```
Modified Modern Treasury and Strip slightly so credentials don't have to
be passed in explicitly. Thanks @mattgmarcus for adding Modern Treasury!
---------
Co-authored-by: Matt Marcus <matt.g.marcus@gmail.com>
Haven't gotten to all of them, but this:
- Updates some of the tools notebooks to actually instantiate a tool
(many just show a 'utility' rather than a tool. More changes to come in
separate PR)
- Move the `Tool` and decorator definitions to `langchain/tools/base.py`
(but still export from `langchain.agents`)
- Add scene explain to the load_tools() function
- Add unit tests for public apis for the langchain.tools and langchain.agents modules