- added an official LangChain YouTube channel :)
- added new tutorials and videos (only videos with enough subscriber or
view numbers)
- added a "New video" icon
## Who can review?
@dev2049
Fixes some bugs I found while testing with more advanced datasets and
queries. Includes using the output of PowerBI to parse the error and
give that back to the LLM.
# Add GraphQL Query Support
This PR introduces a GraphQL API Wrapper tool that allows LLM agents to
query GraphQL databases. The tool utilizes the httpx and gql Python
packages to interact with GraphQL APIs and provides a simple interface
for running queries with LLM agents.
@vowelparrot
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Only run linkchecker on direct changes to docs
This is a stop-gap that will speed up PRs.
Some broken links can slip through if they're embedded in doc-strings
inside the codebase.
But we'll still be running the linkchecker on master.
# Check poetry lock file on CI
This PR checks that the lock file is up to date using poetry lock
--check.
As part of this PR, a new lock file was generated.
# glossary.md renamed as concepts.md and moved under the Getting Started
small PR.
`Concepts` looks right to the point. It is moved under Getting Started
(typical place). Previously it was lost in the Additional Resources
section.
## Who can review?
@hwchase17
# Added support for streaming output response to
HuggingFaceTextgenInference LLM class
Current implementation does not support streaming output. Updated to
incorporate this feature. Tagging @agola11 for visibility.
Instead of halting the entire program if this tool encounters an error,
it should pass the error back to the agent to decide what to do.
This may be best suited for @vowelparrot to review.
### Adds a document loader for Docugami
Specifically:
1. Adds a data loader that talks to the [Docugami](http://docugami.com)
API to download processed documents as semantic XML
2. Parses the semantic XML into chunks, with additional metadata
capturing chunk semantics
3. Adds a detailed notebook showing how you can use additional metadata
returned by Docugami for techniques like the [self-querying
retriever](https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/self_query_retriever.html)
4. Adds an integration test, and related documentation
Here is an example of a result that is not possible without the
capabilities added by Docugami (from the notebook):
<img width="1585" alt="image"
src="https://github.com/hwchase17/langchain/assets/749277/bb6c1ce3-13dc-4349-a53b-de16681fdd5b">
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
Co-authored-by: Taqi Jaffri <tjaffri@gmail.com>
# Improve video_id extraction in `YoutubeLoader`
`YoutubeLoader.from_youtube_url` can only deal with one specific url
format. I've introduced `YoutubeLoader.extract_video_id` which can
extract video id from common YT urls.
Fixes#4451
@eyurtsev
---------
Co-authored-by: Kamil Niski <kamil.niski@gmail.com>
# Added Tutorials section on the top-level of documentation
**Problem Statement**: the Tutorials section in the documentation is
top-priority. Not every project has resources to make tutorials. We have
such a privilege. Community experts created several tutorials on
YouTube.
But the tutorial links are now hidden on the YouTube page and not easily
discovered by first-time visitors.
**PR**: I've created the `Tutorials` page (from the `Additional
Resources/YouTube` page) and moved it to the top level of documentation
in the `Getting Started` section.
## Who can review?
@dev2049
NOTE:
PR checks are randomly failing
3aefaafcdb258819eadf514d81b5b3
# Respect User-Specified User-Agent in WebBaseLoader
This pull request modifies the `WebBaseLoader` class initializer from
the `langchain.document_loaders.web_base` module to preserve any
User-Agent specified by the user in the `header_template` parameter.
Previously, even if a User-Agent was specified in `header_template`, it
would always be overridden by a random User-Agent generated by the
`fake_useragent` library.
With this change, if a User-Agent is specified in `header_template`, it
will be used. Only in the case where no User-Agent is specified will a
random User-Agent be generated and used. This provides additional
flexibility when using the `WebBaseLoader` class, allowing users to
specify their own User-Agent if they have a specific need or preference,
while still providing a reasonable default for cases where no User-Agent
is specified.
This change has no impact on existing users who do not specify a
User-Agent, as the behavior in this case remains the same. However, for
users who do specify a User-Agent, their choice will now be respected
and used for all subsequent requests made using the `WebBaseLoader`
class.
Fixes#4167
## Before submitting
============================= test session starts
==============================
collecting ... collected 1 item
test_web_base.py::TestWebBaseLoader::test_respect_user_specified_user_agent
============================== 1 passed in 3.64s
===============================
PASSED [100%]
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested: @eyurtsev
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
[OpenWeatherMapAPIWrapper](f70e18a5b3/docs/modules/agents/tools/examples/openweathermap.ipynb)
works wonderfully, but the _tool_ itself can't be used in master branch.
- added OpenWeatherMap **tool** to the public api, to be loadable with
`load_tools` by using "openweathermap-api" tool name (that name is used
in the existing
[docs](aff33d52c5/docs/modules/agents/tools/getting_started.md),
at the bottom of the page)
- updated OpenWeatherMap tool's **description** to make the input format
match what the API expects (e.g. `London,GB` instead of `'London,GB'`)
- added [ecosystem documentation page for
OpenWeatherMap](f9c41594fe/docs/ecosystem/openweathermap.md)
- added tool usage example to [OpenWeatherMap's
notebook](f9c41594fe/docs/modules/agents/tools/examples/openweathermap.ipynb)
Let me know if there's something I missed or something needs to be
updated! Or feel free to make edits yourself if that makes it easier for
you 🙂
[RELLM](https://github.com/r2d4/rellm) is a library that wraps local
HuggingFace pipeline models for structured decoding.
RELLM works by generating tokens one at a time. At each step, it masks
tokens that don't conform to the provided partial regular expression.
[JSONFormer](https://github.com/1rgs/jsonformer) is a bit different, where it sequentially adds the keys then decodes each value directly