forked from Archives/langchain
Harrison/prediction guard update (#5404)
Co-authored-by: Daniel Whitenack <whitenack.daniel@gmail.com>
This commit is contained in:
parent
416c8b1da3
commit
d6fb25c439
@ -14,41 +14,85 @@ There exists a Prediction Guard LLM wrapper, which you can access with
|
||||
from langchain.llms import PredictionGuard
|
||||
```
|
||||
|
||||
You can provide the name of your Prediction Guard "proxy" as an argument when initializing the LLM:
|
||||
You can provide the name of the Prediction Guard model as an argument when initializing the LLM:
|
||||
```python
|
||||
pgllm = PredictionGuard(name="your-text-gen-proxy")
|
||||
```
|
||||
|
||||
Alternatively, you can use Prediction Guard's default proxy for SOTA LLMs:
|
||||
```python
|
||||
pgllm = PredictionGuard(name="default-text-gen")
|
||||
pgllm = PredictionGuard(model="MPT-7B-Instruct")
|
||||
```
|
||||
|
||||
You can also provide your access token directly as an argument:
|
||||
```python
|
||||
pgllm = PredictionGuard(name="default-text-gen", token="<your access token>")
|
||||
pgllm = PredictionGuard(model="MPT-7B-Instruct", token="<your access token>")
|
||||
```
|
||||
|
||||
Finally, you can provide an "output" argument that is used to structure/ control the output of the LLM:
|
||||
```python
|
||||
pgllm = PredictionGuard(model="MPT-7B-Instruct", output={"type": "boolean"})
|
||||
```
|
||||
|
||||
## Example usage
|
||||
|
||||
Basic usage of the LLM wrapper:
|
||||
Basic usage of the controlled or guarded LLM wrapper:
|
||||
```python
|
||||
from langchain.llms import PredictionGuard
|
||||
import os
|
||||
|
||||
pgllm = PredictionGuard(name="default-text-gen")
|
||||
pgllm("Tell me a joke")
|
||||
import predictionguard as pg
|
||||
from langchain.llms import PredictionGuard
|
||||
from langchain import PromptTemplate, LLMChain
|
||||
|
||||
# Your Prediction Guard API key. Get one at predictionguard.com
|
||||
os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"
|
||||
|
||||
# Define a prompt template
|
||||
template = """Respond to the following query based on the context.
|
||||
|
||||
Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦
|
||||
Exclusive Candle Box - $80
|
||||
Monthly Candle Box - $45 (NEW!)
|
||||
Scent of The Month Box - $28 (NEW!)
|
||||
Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉
|
||||
|
||||
Query: {query}
|
||||
|
||||
Result: """
|
||||
prompt = PromptTemplate(template=template, input_variables=["query"])
|
||||
|
||||
# With "guarding" or controlling the output of the LLM. See the
|
||||
# Prediction Guard docs (https://docs.predictionguard.com) to learn how to
|
||||
# control the output with integer, float, boolean, JSON, and other types and
|
||||
# structures.
|
||||
pgllm = PredictionGuard(model="MPT-7B-Instruct",
|
||||
output={
|
||||
"type": "categorical",
|
||||
"categories": [
|
||||
"product announcement",
|
||||
"apology",
|
||||
"relational"
|
||||
]
|
||||
})
|
||||
pgllm(prompt.format(query="What kind of post is this?"))
|
||||
```
|
||||
|
||||
Basic LLM Chaining with the Prediction Guard wrapper:
|
||||
```python
|
||||
import os
|
||||
|
||||
from langchain import PromptTemplate, LLMChain
|
||||
from langchain.llms import PredictionGuard
|
||||
|
||||
# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows
|
||||
# you to access all the latest open access models (see https://docs.predictionguard.com)
|
||||
os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>"
|
||||
|
||||
# Your Prediction Guard API key. Get one at predictionguard.com
|
||||
os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"
|
||||
|
||||
pgllm = PredictionGuard(model="OpenAI-text-davinci-003")
|
||||
|
||||
template = """Question: {question}
|
||||
|
||||
Answer: Let's think step by step."""
|
||||
prompt = PromptTemplate(template=template, input_variables=["question"])
|
||||
llm_chain = LLMChain(prompt=prompt, llm=PredictionGuard(name="default-text-gen"), verbose=True)
|
||||
llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)
|
||||
|
||||
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
|
||||
|
||||
|
@ -1,155 +1,222 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# PredictionGuard\n",
|
||||
"\n",
|
||||
"How to use PredictionGuard wrapper"
|
||||
]
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "3RqWPav7AtKL"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install predictionguard langchain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"id": "2xe8JEUwA7_y"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import predictionguard as pg\n",
|
||||
"from langchain.llms import PredictionGuard"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "mesCTyhnJkNS"
|
||||
},
|
||||
"source": [
|
||||
"## Basic LLM usage\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "Ua7Mw1N4HcER"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pgllm = PredictionGuard(name=\"default-text-gen\", token=\"<your access token>\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "Qo2p5flLHxrB"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pgllm(\"Tell me a joke\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "v3MzIUItJ8kV"
|
||||
},
|
||||
"source": [
|
||||
"## Chaining"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "pPegEZExILrT"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import PromptTemplate, LLMChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "suxw62y-J-bg"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Question: {question}\n",
|
||||
"\n",
|
||||
"Answer: Let's think step by step.\"\"\"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
||||
"\n",
|
||||
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
||||
"\n",
|
||||
"llm_chain.predict(question=question)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "l2bc26KHKr7n"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Write a {adjective} poem about {subject}.\"\"\"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"adjective\", \"subject\"])\n",
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
||||
"\n",
|
||||
"llm_chain.predict(adjective=\"sad\", subject=\"ducks\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "I--eSa2PLGqq"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "3RqWPav7AtKL"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install predictionguard langchain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import predictionguard as pg\n",
|
||||
"from langchain.llms import PredictionGuard\n",
|
||||
"from langchain import PromptTemplate, LLMChain"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "2xe8JEUwA7_y"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Basic LLM usage\n",
|
||||
"\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "mesCTyhnJkNS"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows\n",
|
||||
"# you to access all the latest open access models (see https://docs.predictionguard.com)\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"<your OpenAI api key>\"\n",
|
||||
"\n",
|
||||
"# Your Prediction Guard API key. Get one at predictionguard.com\n",
|
||||
"os.environ[\"PREDICTIONGUARD_TOKEN\"] = \"<your Prediction Guard access token>\""
|
||||
],
|
||||
"metadata": {
|
||||
"id": "kp_Ymnx1SnDG"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"pgllm = PredictionGuard(model=\"OpenAI-text-davinci-003\")"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Ua7Mw1N4HcER"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"pgllm(\"Tell me a joke\")"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Qo2p5flLHxrB"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Control the output structure/ type of LLMs"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "EyBYaP_xTMXH"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"template = \"\"\"Respond to the following query based on the context.\n",
|
||||
"\n",
|
||||
"Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦\n",
|
||||
"Exclusive Candle Box - $80 \n",
|
||||
"Monthly Candle Box - $45 (NEW!)\n",
|
||||
"Scent of The Month Box - $28 (NEW!)\n",
|
||||
"Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉\n",
|
||||
"\n",
|
||||
"Query: {query}\n",
|
||||
"\n",
|
||||
"Result: \"\"\"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"query\"])"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "55uxzhQSTPqF"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# Without \"guarding\" or controlling the output of the LLM.\n",
|
||||
"pgllm(prompt.format(query=\"What kind of post is this?\"))"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "yersskWbTaxU"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"# With \"guarding\" or controlling the output of the LLM. See the \n",
|
||||
"# Prediction Guard docs (https://docs.predictionguard.com) to learn how to \n",
|
||||
"# control the output with integer, float, boolean, JSON, and other types and\n",
|
||||
"# structures.\n",
|
||||
"pgllm = PredictionGuard(model=\"OpenAI-text-davinci-003\", \n",
|
||||
" output={\n",
|
||||
" \"type\": \"categorical\",\n",
|
||||
" \"categories\": [\n",
|
||||
" \"product announcement\", \n",
|
||||
" \"apology\", \n",
|
||||
" \"relational\"\n",
|
||||
" ]\n",
|
||||
" })\n",
|
||||
"pgllm(prompt.format(query=\"What kind of post is this?\"))"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "PzxSbYwqTm2w"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Chaining"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "v3MzIUItJ8kV"
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"pgllm = PredictionGuard(model=\"OpenAI-text-davinci-003\")"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "pPegEZExILrT"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"template = \"\"\"Question: {question}\n",
|
||||
"\n",
|
||||
"Answer: Let's think step by step.\"\"\"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
||||
"\n",
|
||||
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
||||
"\n",
|
||||
"llm_chain.predict(question=question)"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "suxw62y-J-bg"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"template = \"\"\"Write a {adjective} poem about {subject}.\"\"\"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"adjective\", \"subject\"])\n",
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
||||
"\n",
|
||||
"llm_chain.predict(adjective=\"sad\", subject=\"ducks\")"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "l2bc26KHKr7n"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"source": [],
|
||||
"metadata": {
|
||||
"id": "I--eSa2PLGqq"
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
}
|
||||
]
|
||||
}
|
@ -16,15 +16,24 @@ class PredictionGuard(LLM):
|
||||
"""Wrapper around Prediction Guard large language models.
|
||||
To use, you should have the ``predictionguard`` python package installed, and the
|
||||
environment variable ``PREDICTIONGUARD_TOKEN`` set with your access token, or pass
|
||||
it as a named parameter to the constructor.
|
||||
it as a named parameter to the constructor. To use Prediction Guard's API along
|
||||
with OpenAI models, set the environment variable ``OPENAI_API_KEY`` with your
|
||||
OpenAI API key as well.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
pgllm = PredictionGuard(name="text-gen-proxy-name", token="my-access-token")
|
||||
pgllm = PredictionGuard(model="MPT-7B-Instruct",
|
||||
token="my-access-token",
|
||||
output={
|
||||
"type": "boolean"
|
||||
})
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
name: Optional[str] = "default-text-gen"
|
||||
"""Proxy name to use."""
|
||||
model: Optional[str] = "MPT-7B-Instruct"
|
||||
"""Model name to use."""
|
||||
|
||||
output: Optional[Dict[str, Any]] = None
|
||||
"""The output type or structure for controlling the LLM output."""
|
||||
|
||||
max_tokens: int = 256
|
||||
"""Denotes the number of tokens to predict per generation."""
|
||||
@ -33,6 +42,7 @@ class PredictionGuard(LLM):
|
||||
"""A non-negative float that tunes the degree of randomness in generation."""
|
||||
|
||||
token: Optional[str] = None
|
||||
"""Your Prediction Guard access token."""
|
||||
|
||||
stop: Optional[List[str]] = None
|
||||
|
||||
@ -58,7 +68,7 @@ class PredictionGuard(LLM):
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling Cohere API."""
|
||||
"""Get the default parameters for calling the Prediction Guard API."""
|
||||
return {
|
||||
"max_tokens": self.max_tokens,
|
||||
"temperature": self.temperature,
|
||||
@ -67,7 +77,7 @@ class PredictionGuard(LLM):
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"name": self.name}, **self._default_params}
|
||||
return {**{"model": self.model}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
@ -80,7 +90,7 @@ class PredictionGuard(LLM):
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
) -> str:
|
||||
"""Call out to Prediction Guard's model proxy.
|
||||
"""Call out to Prediction Guard's model API.
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
Returns:
|
||||
@ -89,6 +99,8 @@ class PredictionGuard(LLM):
|
||||
.. code-block:: python
|
||||
response = pgllm("Tell me a joke.")
|
||||
"""
|
||||
import predictionguard as pg
|
||||
|
||||
params = self._default_params
|
||||
if self.stop is not None and stop is not None:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
@ -97,15 +109,14 @@ class PredictionGuard(LLM):
|
||||
else:
|
||||
params["stop_sequences"] = stop
|
||||
|
||||
response = self.client.predict(
|
||||
name=self.name,
|
||||
data={
|
||||
"prompt": prompt,
|
||||
"max_tokens": params["max_tokens"],
|
||||
"temperature": params["temperature"],
|
||||
},
|
||||
response = pg.Completion.create(
|
||||
model=self.model,
|
||||
prompt=prompt,
|
||||
output=self.output,
|
||||
temperature=params["temperature"],
|
||||
max_tokens=params["max_tokens"],
|
||||
)
|
||||
text = response["text"]
|
||||
text = response["choices"][0]["text"]
|
||||
|
||||
# If stop tokens are provided, Prediction Guard's endpoint returns them.
|
||||
# In order to make this consistent with other endpoints, we strip them.
|
||||
|
@ -5,6 +5,6 @@ from langchain.llms.predictionguard import PredictionGuard
|
||||
|
||||
def test_predictionguard_call() -> None:
|
||||
"""Test valid call to prediction guard."""
|
||||
llm = PredictionGuard(name="default-text-gen")
|
||||
llm = PredictionGuard(model="OpenAI-text-davinci-003")
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
Loading…
Reference in New Issue
Block a user