forked from Archives/langchain
d6fb25c439
Co-authored-by: Daniel Whitenack <whitenack.daniel@gmail.com>
222 lines
6.1 KiB
Plaintext
222 lines
6.1 KiB
Plaintext
{
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0,
|
|
"metadata": {
|
|
"colab": {
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"name": "python3",
|
|
"display_name": "Python 3"
|
|
},
|
|
"language_info": {
|
|
"name": "python"
|
|
}
|
|
},
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "3RqWPav7AtKL"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"! pip install predictionguard langchain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"import predictionguard as pg\n",
|
|
"from langchain.llms import PredictionGuard\n",
|
|
"from langchain import PromptTemplate, LLMChain"
|
|
],
|
|
"metadata": {
|
|
"id": "2xe8JEUwA7_y"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Basic LLM usage\n",
|
|
"\n"
|
|
],
|
|
"metadata": {
|
|
"id": "mesCTyhnJkNS"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows\n",
|
|
"# you to access all the latest open access models (see https://docs.predictionguard.com)\n",
|
|
"os.environ[\"OPENAI_API_KEY\"] = \"<your OpenAI api key>\"\n",
|
|
"\n",
|
|
"# Your Prediction Guard API key. Get one at predictionguard.com\n",
|
|
"os.environ[\"PREDICTIONGUARD_TOKEN\"] = \"<your Prediction Guard access token>\""
|
|
],
|
|
"metadata": {
|
|
"id": "kp_Ymnx1SnDG"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"pgllm = PredictionGuard(model=\"OpenAI-text-davinci-003\")"
|
|
],
|
|
"metadata": {
|
|
"id": "Ua7Mw1N4HcER"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"pgllm(\"Tell me a joke\")"
|
|
],
|
|
"metadata": {
|
|
"id": "Qo2p5flLHxrB"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Control the output structure/ type of LLMs"
|
|
],
|
|
"metadata": {
|
|
"id": "EyBYaP_xTMXH"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"template = \"\"\"Respond to the following query based on the context.\n",
|
|
"\n",
|
|
"Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦\n",
|
|
"Exclusive Candle Box - $80 \n",
|
|
"Monthly Candle Box - $45 (NEW!)\n",
|
|
"Scent of The Month Box - $28 (NEW!)\n",
|
|
"Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉\n",
|
|
"\n",
|
|
"Query: {query}\n",
|
|
"\n",
|
|
"Result: \"\"\"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"query\"])"
|
|
],
|
|
"metadata": {
|
|
"id": "55uxzhQSTPqF"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# Without \"guarding\" or controlling the output of the LLM.\n",
|
|
"pgllm(prompt.format(query=\"What kind of post is this?\"))"
|
|
],
|
|
"metadata": {
|
|
"id": "yersskWbTaxU"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# With \"guarding\" or controlling the output of the LLM. See the \n",
|
|
"# Prediction Guard docs (https://docs.predictionguard.com) to learn how to \n",
|
|
"# control the output with integer, float, boolean, JSON, and other types and\n",
|
|
"# structures.\n",
|
|
"pgllm = PredictionGuard(model=\"OpenAI-text-davinci-003\", \n",
|
|
" output={\n",
|
|
" \"type\": \"categorical\",\n",
|
|
" \"categories\": [\n",
|
|
" \"product announcement\", \n",
|
|
" \"apology\", \n",
|
|
" \"relational\"\n",
|
|
" ]\n",
|
|
" })\n",
|
|
"pgllm(prompt.format(query=\"What kind of post is this?\"))"
|
|
],
|
|
"metadata": {
|
|
"id": "PzxSbYwqTm2w"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Chaining"
|
|
],
|
|
"metadata": {
|
|
"id": "v3MzIUItJ8kV"
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"pgllm = PredictionGuard(model=\"OpenAI-text-davinci-003\")"
|
|
],
|
|
"metadata": {
|
|
"id": "pPegEZExILrT"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
|
|
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
|
"\n",
|
|
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
|
"\n",
|
|
"llm_chain.predict(question=question)"
|
|
],
|
|
"metadata": {
|
|
"id": "suxw62y-J-bg"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [
|
|
"template = \"\"\"Write a {adjective} poem about {subject}.\"\"\"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"adjective\", \"subject\"])\n",
|
|
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
|
"\n",
|
|
"llm_chain.predict(adjective=\"sad\", subject=\"ducks\")"
|
|
],
|
|
"metadata": {
|
|
"id": "l2bc26KHKr7n"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"source": [],
|
|
"metadata": {
|
|
"id": "I--eSa2PLGqq"
|
|
},
|
|
"execution_count": null,
|
|
"outputs": []
|
|
}
|
|
]
|
|
} |