Add KuzuQAChain (#6454)

This PR adds `KuzuGraph` and `KuzuQAChain` for interacting with [Kùzu
database](https://github.com/kuzudb/kuzu). Kùzu is an in-process
property graph database management system (GDBMS) built for query speed
and scalability. The `KuzuGraph` and `KuzuQAChain` provide the same
functionality as the existing integration with NebulaGraph and Neo4j and
enables query generation and question answering over Kùzu database.

A notebook example and a simple test case have also been added.

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This commit is contained in:
囧囧 2023-06-21 01:07:00 -04:00 committed by GitHub
parent 6e07283dd5
commit 0fce8ef178
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 628 additions and 6 deletions

View File

@ -0,0 +1,363 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# KuzuQAChain\n",
"\n",
"This notebook shows how to use LLMs to provide a natural language interface to [Kùzu](https://kuzudb.com) database."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"[Kùzu](https://kuzudb.com) is an in-process property graph database management system. You can simply install it with `pip`:\n",
"\n",
"```bash\n",
"pip install kuzu\n",
"```\n",
"\n",
"Once installed, you can simply import it and start creating a database on the local machine and connect to it:\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import kuzu\n",
"db = kuzu.Database(\"test_db\")\n",
"conn = kuzu.Connection(db)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we create the schema for a simple movie database:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<kuzu.query_result.QueryResult at 0x1066ff410>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conn.execute(\"CREATE NODE TABLE Movie (name STRING, PRIMARY KEY(name))\")\n",
"conn.execute(\"CREATE NODE TABLE Person (name STRING, birthDate STRING, PRIMARY KEY(name))\")\n",
"conn.execute(\"CREATE REL TABLE ActedIn (FROM Person TO Movie)\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we can insert some data."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<kuzu.query_result.QueryResult at 0x107016210>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conn.execute(\"CREATE (:Person {name: 'Al Pacino', birthDate: '1940-04-25'})\")\n",
"conn.execute(\"CREATE (:Person {name: 'Robert De Niro', birthDate: '1943-08-17'})\")\n",
"conn.execute(\"CREATE (:Movie {name: 'The Godfather'})\")\n",
"conn.execute(\"CREATE (:Movie {name: 'The Godfather: Part II'})\")\n",
"conn.execute(\"CREATE (:Movie {name: 'The Godfather Coda: The Death of Michael Corleone'})\")\n",
"conn.execute(\"MATCH (p:Person), (m:Movie) WHERE p.name = 'Al Pacino' AND m.name = 'The Godfather' CREATE (p)-[:ActedIn]->(m)\")\n",
"conn.execute(\"MATCH (p:Person), (m:Movie) WHERE p.name = 'Al Pacino' AND m.name = 'The Godfather: Part II' CREATE (p)-[:ActedIn]->(m)\")\n",
"conn.execute(\"MATCH (p:Person), (m:Movie) WHERE p.name = 'Al Pacino' AND m.name = 'The Godfather Coda: The Death of Michael Corleone' CREATE (p)-[:ActedIn]->(m)\")\n",
"conn.execute(\"MATCH (p:Person), (m:Movie) WHERE p.name = 'Robert De Niro' AND m.name = 'The Godfather: Part II' CREATE (p)-[:ActedIn]->(m)\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating `KuzuQAChain`\n",
"\n",
"We can now create the `KuzuGraph` and `KuzuQAChain`. To create the `KuzuGraph` we simply need to pass the database object to the `KuzuGraph` constructor."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.graphs import KuzuGraph\n",
"from langchain.chains import KuzuQAChain"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"graph = KuzuGraph(db)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"chain = KuzuQAChain.from_llm(\n",
" ChatOpenAI(temperature=0), graph=graph, verbose=True\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Refresh graph schema information\n",
"\n",
"If the schema of database changes, you can refresh the schema information needed to generate Cypher statements."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# graph.refresh_schema()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Node properties: [{'properties': [('name', 'STRING')], 'label': 'Movie'}, {'properties': [('name', 'STRING'), ('birthDate', 'STRING')], 'label': 'Person'}]\n",
"Relationships properties: [{'properties': [], 'label': 'ActedIn'}]\n",
"Relationships: ['(:Person)-[:ActedIn]->(:Movie)']\n",
"\n"
]
}
],
"source": [
"print(graph.get_schema)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Querying the graph\n",
"\n",
"We can now use the `KuzuQAChain` to ask question of the graph"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Generated Cypher:\n",
"\u001b[32;1m\u001b[1;3mMATCH (p:Person)-[:ActedIn]->(m:Movie {name: 'The Godfather: Part II'}) RETURN p.name\u001b[0m\n",
"Full Context:\n",
"\u001b[32;1m\u001b[1;3m[{'p.name': 'Al Pacino'}, {'p.name': 'Robert De Niro'}]\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Al Pacino and Robert De Niro both played in The Godfather: Part II.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"Who played in The Godfather: Part II?\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Generated Cypher:\n",
"\u001b[32;1m\u001b[1;3mMATCH (p:Person {name: 'Robert De Niro'})-[:ActedIn]->(m:Movie)\n",
"RETURN m.name\u001b[0m\n",
"Full Context:\n",
"\u001b[32;1m\u001b[1;3m[{'m.name': 'The Godfather: Part II'}]\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Robert De Niro played in The Godfather: Part II.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"Robert De Niro played in which movies?\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Generated Cypher:\n",
"\u001b[32;1m\u001b[1;3mMATCH (p:Person {name: 'Robert De Niro'})-[:ActedIn]->(m:Movie)\n",
"RETURN p.birthDate\u001b[0m\n",
"Full Context:\n",
"\u001b[32;1m\u001b[1;3m[{'p.birthDate': '1943-08-17'}]\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Robert De Niro was born on August 17, 1943.'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"Robert De Niro is born in which year?\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Generated Cypher:\n",
"\u001b[32;1m\u001b[1;3mMATCH (p:Person)-[:ActedIn]->(m:Movie{name:'The Godfather: Part II'})\n",
"WITH p, m, p.birthDate AS birthDate\n",
"ORDER BY birthDate ASC\n",
"LIMIT 1\n",
"RETURN p.name\u001b[0m\n",
"Full Context:\n",
"\u001b[32;1m\u001b[1;3m[{'p.name': 'Al Pacino'}]\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The oldest actor who played in The Godfather: Part II is Al Pacino.'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"Who is the oldest actor who played in The Godfather: Part II?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -15,6 +15,7 @@ from langchain.chains.conversational_retrieval.base import (
from langchain.chains.flare.base import FlareChain
from langchain.chains.graph_qa.base import GraphQAChain
from langchain.chains.graph_qa.cypher import GraphCypherQAChain
from langchain.chains.graph_qa.kuzu import KuzuQAChain
from langchain.chains.graph_qa.nebulagraph import NebulaGraphQAChain
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder
from langchain.chains.llm import LLMChain
@ -67,6 +68,7 @@ __all__ = [
"GraphCypherQAChain",
"GraphQAChain",
"HypotheticalDocumentEmbedder",
"KuzuQAChain",
"LLMBashChain",
"LLMChain",
"LLMCheckerChain",

View File

@ -0,0 +1,93 @@
"""Question answering over a graph."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import CYPHER_QA_PROMPT, KUZU_GENERATION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.kuzu_graph import KuzuGraph
from langchain.prompts.base import BasePromptTemplate
class KuzuQAChain(Chain):
"""Chain for question-answering against a graph by generating Cypher statements for
Kùzu.
"""
graph: KuzuGraph = Field(exclude=True)
cypher_generation_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
*,
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
cypher_prompt: BasePromptTemplate = KUZU_GENERATION_PROMPT,
**kwargs: Any,
) -> KuzuQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
cypher_generation_chain = LLMChain(llm=llm, prompt=cypher_prompt)
return cls(
qa_chain=qa_chain,
cypher_generation_chain=cypher_generation_chain,
**kwargs,
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
"""Generate Cypher statement, use it to look up in db and answer question."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
question = inputs[self.input_key]
generated_cypher = self.cypher_generation_chain.run(
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
)
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose)
_run_manager.on_text(
generated_cypher, color="green", end="\n", verbose=self.verbose
)
context = self.graph.query(generated_cypher)
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
_run_manager.on_text(
str(context), color="green", end="\n", verbose=self.verbose
)
result = self.qa_chain(
{"question": question, "context": context},
callbacks=callbacks,
)
return {self.output_key: result[self.qa_chain.output_key]}

View File

@ -72,6 +72,23 @@ NGQL_GENERATION_PROMPT = PromptTemplate(
input_variables=["schema", "question"], template=NGQL_GENERATION_TEMPLATE
)
KUZU_EXTRA_INSTRUCTIONS = """
Instructions:
Generate statement with Kùzu Cypher dialect (rather than standard):
1. do not use `WHERE EXISTS` clause to check the existence of a property because Kùzu database has a fixed schema.
2. do not omit relationship pattern. Always use `()-[]->()` instead of `()->()`.
3. do not include any notes or comments even if the statement does not produce the expected result.
```\n"""
KUZU_GENERATION_TEMPLATE = CYPHER_GENERATION_TEMPLATE.replace(
"Generate Cypher", "Generate Kùzu Cypher"
).replace("Instructions:", KUZU_EXTRA_INSTRUCTIONS)
KUZU_GENERATION_PROMPT = PromptTemplate(
input_variables=["schema", "question"], template=KUZU_GENERATION_TEMPLATE
)
CYPHER_QA_TEMPLATE = """You are an assistant that helps to form nice and human understandable answers.
The information part contains the provided information that you must use to construct an answer.
The provided information is authorative, you must never doubt it or try to use your internal knowledge to correct it.

View File

@ -1,6 +1,7 @@
"""Graph implementations."""
from langchain.graphs.kuzu_graph import KuzuGraph
from langchain.graphs.nebula_graph import NebulaGraph
from langchain.graphs.neo4j_graph import Neo4jGraph
from langchain.graphs.networkx_graph import NetworkxEntityGraph
__all__ = ["NetworkxEntityGraph", "Neo4jGraph", "NebulaGraph"]
__all__ = ["NetworkxEntityGraph", "Neo4jGraph", "NebulaGraph", "KuzuGraph"]

View File

@ -0,0 +1,90 @@
from typing import Any, Dict, List
class KuzuGraph:
"""Kùzu wrapper for graph operations."""
def __init__(self, db: Any, database: str = "kuzu") -> None:
try:
import kuzu
except ImportError:
raise ImportError(
"Could not import Kùzu python package."
"Please install Kùzu with `pip install kuzu`."
)
self.db = db
self.conn = kuzu.Connection(self.db)
self.database = database
self.refresh_schema()
@property
def get_schema(self) -> str:
"""Returns the schema of the Kùzu database"""
return self.schema
def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]:
"""Query Kùzu database"""
params_list = []
for param_name in params:
params_list.append([param_name, params[param_name]])
result = self.conn.execute(query, params_list)
column_names = result.get_column_names()
return_list = []
while result.has_next():
row = result.get_next()
return_list.append(dict(zip(column_names, row)))
return return_list
def refresh_schema(self) -> None:
"""Refreshes the Kùzu graph schema information"""
node_properties = []
node_table_names = self.conn._get_node_table_names()
for table_name in node_table_names:
current_table_schema = {"properties": [], "label": table_name}
properties = self.conn._get_node_property_names(table_name)
for property_name in properties:
property_type = properties[property_name]["type"]
list_type_flag = ""
if properties[property_name]["dimension"] > 0:
if "shape" in properties[property_name]:
for s in properties[property_name]["shape"]:
list_type_flag += "[%s]" % s
else:
for i in range(properties[property_name]["dimension"]):
list_type_flag += "[]"
property_type += list_type_flag
current_table_schema["properties"].append(
(property_name, property_type)
)
node_properties.append(current_table_schema)
relationships = []
rel_tables = self.conn._get_rel_table_names()
for table in rel_tables:
relationships.append(
"(:%s)-[:%s]->(:%s)" % (table["src"], table["name"], table["dst"])
)
rel_properties = []
for table in rel_tables:
current_table_schema = {"properties": [], "label": table["name"]}
properties_text = self.conn._connection.get_rel_property_names(
table["name"]
).split("\n")
for i, line in enumerate(properties_text):
# The first 3 lines defines src, dst and name, so we skip them
if i < 3:
continue
if not line:
continue
property_name, property_type = line.strip().split(" ")
current_table_schema["properties"].append(
(property_name, property_type)
)
rel_properties.append(current_table_schema)
self.schema = (
f"Node properties: {node_properties}\n"
f"Relationships properties: {rel_properties}\n"
f"Relationships: {relationships}\n"
)

10
poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry and should not be changed by hand.
# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand.
[[package]]
name = "absl-py"
@ -11473,13 +11473,13 @@ cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\
cffi = ["cffi (>=1.11)"]
[extras]
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "jina", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "pinecone-text", "pymongo", "weaviate-client", "redis", "google-api-python-client", "google-auth", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx", "nomic", "aleph-alpha-client", "deeplake", "pgvector", "psycopg2-binary", "pyowm", "pytesseract", "html2text", "atlassian-python-api", "gptcache", "duckduckgo-search", "arxiv", "azure-identity", "clickhouse-connect", "azure-cosmos", "lancedb", "langkit", "lark", "pexpect", "pyvespa", "O365", "jq", "docarray", "steamship", "pdfminer-six", "lxml", "requests-toolbelt", "neo4j", "openlm", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "momento", "singlestoredb", "tigrisdb", "nebula3-python", "awadb"]
azure = ["azure-identity", "azure-cosmos", "openai", "azure-core", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-search-documents"]
all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "awadb", "azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-auth", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "langkit", "lark", "lxml", "manifest-ml", "momento", "nebula3-python", "neo4j", "networkx", "nlpcloud", "nltk", "nomic", "openai", "openlm", "opensearch-py", "pdfminer-six", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pymongo", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "requests-toolbelt", "sentence-transformers", "singlestoredb", "spacy", "steamship", "tensorflow-text", "tigrisdb", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"]
azure = ["azure-ai-formrecognizer", "azure-ai-vision", "azure-cognitiveservices-speech", "azure-core", "azure-cosmos", "azure-identity", "azure-search-documents", "openai"]
cohere = ["cohere"]
docarray = ["docarray"]
embeddings = ["sentence-transformers"]
extended-testing = ["beautifulsoup4", "bibtexparser", "chardet", "jq", "pdfminer-six", "pgvector", "pypdf", "pymupdf", "pypdfium2", "tqdm", "lxml", "atlassian-python-api", "beautifulsoup4", "pandas", "telethon", "psychicapi", "zep-python", "gql", "requests-toolbelt", "html2text", "py-trello", "scikit-learn", "pyspark", "openai"]
llms = ["anthropic", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
extended-testing = ["atlassian-python-api", "beautifulsoup4", "beautifulsoup4", "bibtexparser", "chardet", "gql", "html2text", "jq", "lxml", "openai", "pandas", "pdfminer-six", "pgvector", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "requests-toolbelt", "scikit-learn", "telethon", "tqdm", "zep-python"]
llms = ["anthropic", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openlm", "torch", "transformers"]
openai = ["openai", "tiktoken"]
qdrant = ["qdrant-client"]
text-helpers = ["chardet"]

View File

@ -0,0 +1,56 @@
import shutil
import tempfile
import unittest
from langchain.graphs import KuzuGraph
EXPECTED_SCHEMA = """
Node properties: [{'properties': [('name', 'STRING')], 'label': 'Movie'}, {'properties': [('name', 'STRING'), ('birthDate', 'STRING')], 'label': 'Person'}]
Relationships properties: [{'properties': [], 'label': 'ActedIn'}]
Relationships: ['(:Person)-[:ActedIn]->(:Movie)']
""" # noqa: E501
class TestKuzu(unittest.TestCase):
def setUp(self) -> None:
try:
import kuzu
except ImportError as e:
raise ImportError(
"Cannot import Python package kuzu. Please install it by running "
"`pip install kuzu`."
) from e
self.tmpdir = tempfile.mkdtemp()
self.kuzu_database = kuzu.Database(self.tmpdir)
self.conn = kuzu.Connection(self.kuzu_database)
self.conn.execute("CREATE NODE TABLE Movie (name STRING, PRIMARY KEY(name))")
self.conn.execute("CREATE (:Movie {name: 'The Godfather'})")
self.conn.execute("CREATE (:Movie {name: 'The Godfather: Part II'})")
self.conn.execute(
"CREATE (:Movie {name: 'The Godfather Coda: The Death of Michael "
"Corleone'})"
)
self.kuzu_graph = KuzuGraph(self.kuzu_database)
def tearDown(self) -> None:
shutil.rmtree(self.tmpdir, ignore_errors=True)
def test_query(self) -> None:
result = self.kuzu_graph.query("MATCH (n:Movie) RETURN n.name ORDER BY n.name")
excepted_result = [
{"n.name": "The Godfather"},
{"n.name": "The Godfather Coda: The Death of Michael Corleone"},
{"n.name": "The Godfather: Part II"},
]
self.assertEqual(result, excepted_result)
def test_refresh_schema(self) -> None:
self.conn.execute(
"CREATE NODE TABLE Person (name STRING, birthDate STRING, PRIMARY "
"KEY(name))"
)
self.conn.execute("CREATE REL TABLE ActedIn (FROM Person TO Movie)")
self.kuzu_graph.refresh_schema()
schema = self.kuzu_graph.get_schema
self.assertEqual(schema, EXPECTED_SCHEMA)