mirror of
https://github.com/rivo/tview.git
synced 2024-11-19 03:25:34 +00:00
445 lines
11 KiB
Go
445 lines
11 KiB
Go
package tview
|
|
|
|
import (
|
|
"fmt"
|
|
"os"
|
|
"sync"
|
|
|
|
"github.com/gdamore/tcell"
|
|
)
|
|
|
|
// Application represents the top node of an application.
|
|
//
|
|
// It is not strictly required to use this class as none of the other classes
|
|
// depend on it. However, it provides useful tools to set up an application and
|
|
// plays nicely with all widgets.
|
|
type Application struct {
|
|
sync.RWMutex
|
|
|
|
// The application's screen.
|
|
screen tcell.Screen
|
|
|
|
// Indicates whether the application's screen is currently active.
|
|
running bool
|
|
|
|
// The primitive which currently has the keyboard focus.
|
|
focus Primitive
|
|
|
|
// The root primitive to be seen on the screen.
|
|
root Primitive
|
|
|
|
// Whether or not the application resizes the root primitive.
|
|
rootFullscreen bool
|
|
|
|
// An optional capture function which receives a key event and returns the
|
|
// event to be forwarded to the default input handler (nil if nothing should
|
|
// be forwarded).
|
|
inputCapture func(event *tcell.EventKey) *tcell.EventKey
|
|
|
|
// An optional callback function which is invoked just before the root
|
|
// primitive is drawn.
|
|
beforeDraw func(screen tcell.Screen) bool
|
|
|
|
// An optional callback function which is invoked after the root primitive
|
|
// was drawn.
|
|
afterDraw func(screen tcell.Screen)
|
|
|
|
// Halts the event loop during suspended mode.
|
|
suspendMutex sync.Mutex
|
|
|
|
// Used to send screen events from separate goroutine to main event loop
|
|
events chan tcell.Event
|
|
|
|
// Used to send primitive updates from separate goroutines to the main event loop
|
|
updates chan func()
|
|
}
|
|
|
|
// NewApplication creates and returns a new application.
|
|
func NewApplication() *Application {
|
|
return &Application{
|
|
events: make(chan tcell.Event, 100),
|
|
updates: make(chan func(), 100),
|
|
}
|
|
}
|
|
|
|
// SetInputCapture sets a function which captures all key events before they are
|
|
// forwarded to the key event handler of the primitive which currently has
|
|
// focus. This function can then choose to forward that key event (or a
|
|
// different one) by returning it or stop the key event processing by returning
|
|
// nil.
|
|
//
|
|
// Note that this also affects the default event handling of the application
|
|
// itself: Such a handler can intercept the Ctrl-C event which closes the
|
|
// applicatoon.
|
|
func (a *Application) SetInputCapture(capture func(event *tcell.EventKey) *tcell.EventKey) *Application {
|
|
a.inputCapture = capture
|
|
return a
|
|
}
|
|
|
|
// GetInputCapture returns the function installed with SetInputCapture() or nil
|
|
// if no such function has been installed.
|
|
func (a *Application) GetInputCapture() func(event *tcell.EventKey) *tcell.EventKey {
|
|
return a.inputCapture
|
|
}
|
|
|
|
// SetScreen allows you to provide your own tcell.Screen object. For most
|
|
// applications, this is not needed and you should be familiar with
|
|
// tcell.Screen when using this function. Run() will call Init() and Fini() on
|
|
// the provided screen object.
|
|
//
|
|
// This function is typically called before calling Run(). Calling it while an
|
|
// application is running will switch the application to the new screen. Fini()
|
|
// will be called on the old screen and Init() on the new screen (errors
|
|
// returned by Init() will lead to a panic).
|
|
//
|
|
// Note that calling Suspend() will invoke Fini() on your screen object and it
|
|
// will not be restored when suspended mode ends. Instead, a new default screen
|
|
// object will be created.
|
|
func (a *Application) SetScreen(screen tcell.Screen) *Application {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
if a.running {
|
|
a.screen.Fini()
|
|
}
|
|
a.screen = screen
|
|
if a.running {
|
|
if err := a.screen.Init(); err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
return a
|
|
}
|
|
|
|
// Run starts the application and thus the event loop. This function returns
|
|
// when Stop() was called.
|
|
func (a *Application) Run() error {
|
|
var err error
|
|
a.Lock()
|
|
|
|
// Make a screen if there is none yet.
|
|
if a.screen == nil {
|
|
a.screen, err = tcell.NewScreen()
|
|
if err != nil {
|
|
a.Unlock()
|
|
return err
|
|
}
|
|
}
|
|
if err = a.screen.Init(); err != nil {
|
|
a.Unlock()
|
|
return err
|
|
}
|
|
a.running = true
|
|
|
|
// We catch panics to clean up because they mess up the terminal.
|
|
defer func() {
|
|
if p := recover(); p != nil {
|
|
if a.screen != nil {
|
|
a.screen.Fini()
|
|
}
|
|
a.running = false
|
|
panic(p)
|
|
}
|
|
}()
|
|
|
|
// Draw the screen for the first time.
|
|
a.Unlock()
|
|
a.Draw()
|
|
|
|
// Separate loop to wait for screen events
|
|
go func() {
|
|
for {
|
|
// Do not poll events during suspend mode
|
|
a.suspendMutex.Lock()
|
|
a.RLock()
|
|
screen := a.screen
|
|
a.RUnlock()
|
|
if screen == nil {
|
|
a.suspendMutex.Unlock()
|
|
// send signal to stop main event loop
|
|
a.QueueEvent(nil)
|
|
break
|
|
}
|
|
|
|
// Wait for next event.
|
|
a.QueueEvent(screen.PollEvent())
|
|
a.suspendMutex.Unlock()
|
|
}
|
|
}()
|
|
|
|
// Start event loop.
|
|
loop:
|
|
for {
|
|
select {
|
|
case event := <-a.events:
|
|
if event == nil {
|
|
// The screen was finalized. Exit the loop.
|
|
break loop
|
|
}
|
|
|
|
switch event := event.(type) {
|
|
case *tcell.EventKey:
|
|
a.RLock()
|
|
p := a.focus
|
|
a.RUnlock()
|
|
|
|
// Intercept keys.
|
|
if a.inputCapture != nil {
|
|
event = a.inputCapture(event)
|
|
if event == nil {
|
|
break loop // Don't forward event.
|
|
}
|
|
}
|
|
|
|
// Ctrl-C closes the application.
|
|
if event.Key() == tcell.KeyCtrlC {
|
|
a.Stop()
|
|
}
|
|
|
|
// Pass other key events to the currently focused primitive.
|
|
if p != nil {
|
|
if handler := p.InputHandler(); handler != nil {
|
|
handler(event, func(p Primitive) {
|
|
a.SetFocus(p)
|
|
})
|
|
a.Draw()
|
|
}
|
|
}
|
|
case *tcell.EventResize:
|
|
a.RLock()
|
|
screen := a.screen
|
|
a.RUnlock()
|
|
screen.Clear()
|
|
a.Draw()
|
|
}
|
|
|
|
case updater := <-a.updates:
|
|
updater()
|
|
a.Draw()
|
|
}
|
|
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Stop stops the application, causing Run() to return.
|
|
func (a *Application) Stop() {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
if a.screen == nil {
|
|
return
|
|
}
|
|
a.screen.Fini()
|
|
a.screen = nil
|
|
a.running = false
|
|
}
|
|
|
|
// Suspend temporarily suspends the application by exiting terminal UI mode and
|
|
// invoking the provided function "f". When "f" returns, terminal UI mode is
|
|
// entered again and the application resumes.
|
|
//
|
|
// A return value of true indicates that the application was suspended and "f"
|
|
// was called. If false is returned, the application was already suspended,
|
|
// terminal UI mode was not exited, and "f" was not called.
|
|
func (a *Application) Suspend(f func()) bool {
|
|
a.RLock()
|
|
|
|
if a.screen == nil {
|
|
// Screen has not yet been initialized.
|
|
a.RUnlock()
|
|
return false
|
|
}
|
|
|
|
// Enter suspended mode.
|
|
a.suspendMutex.Lock()
|
|
defer a.suspendMutex.Unlock()
|
|
a.RUnlock()
|
|
a.Stop()
|
|
|
|
// Deal with panics during suspended mode. Exit the program.
|
|
defer func() {
|
|
if p := recover(); p != nil {
|
|
fmt.Println(p)
|
|
os.Exit(1)
|
|
}
|
|
}()
|
|
|
|
// Wait for "f" to return.
|
|
f()
|
|
|
|
// Make a new screen and redraw.
|
|
a.Lock()
|
|
var err error
|
|
a.screen, err = tcell.NewScreen()
|
|
if err != nil {
|
|
a.Unlock()
|
|
panic(err)
|
|
}
|
|
if err = a.screen.Init(); err != nil {
|
|
a.Unlock()
|
|
panic(err)
|
|
}
|
|
a.running = true
|
|
a.Unlock()
|
|
a.Draw()
|
|
|
|
// Continue application loop.
|
|
return true
|
|
}
|
|
|
|
// Draw refreshes the screen. It calls the Draw() function of the application's
|
|
// root primitive and then syncs the screen buffer.
|
|
func (a *Application) Draw() *Application {
|
|
a.Lock()
|
|
defer a.Unlock()
|
|
|
|
screen := a.screen
|
|
root := a.root
|
|
fullscreen := a.rootFullscreen
|
|
before := a.beforeDraw
|
|
after := a.afterDraw
|
|
|
|
// Maybe we're not ready yet or not anymore.
|
|
if screen == nil || root == nil {
|
|
return a
|
|
}
|
|
|
|
// Resize if requested.
|
|
if fullscreen && root != nil {
|
|
width, height := screen.Size()
|
|
root.SetRect(0, 0, width, height)
|
|
}
|
|
|
|
// Call before handler if there is one.
|
|
if before != nil {
|
|
if before(screen) {
|
|
screen.Show()
|
|
return a
|
|
}
|
|
}
|
|
|
|
// Draw all primitives.
|
|
root.Draw(screen)
|
|
|
|
// Call after handler if there is one.
|
|
if after != nil {
|
|
after(screen)
|
|
}
|
|
|
|
// Sync screen.
|
|
screen.Show()
|
|
|
|
return a
|
|
}
|
|
|
|
// SetBeforeDrawFunc installs a callback function which is invoked just before
|
|
// the root primitive is drawn during screen updates. If the function returns
|
|
// true, drawing will not continue, i.e. the root primitive will not be drawn
|
|
// (and an after-draw-handler will not be called).
|
|
//
|
|
// Note that the screen is not cleared by the application. To clear the screen,
|
|
// you may call screen.Clear().
|
|
//
|
|
// Provide nil to uninstall the callback function.
|
|
func (a *Application) SetBeforeDrawFunc(handler func(screen tcell.Screen) bool) *Application {
|
|
a.beforeDraw = handler
|
|
return a
|
|
}
|
|
|
|
// GetBeforeDrawFunc returns the callback function installed with
|
|
// SetBeforeDrawFunc() or nil if none has been installed.
|
|
func (a *Application) GetBeforeDrawFunc() func(screen tcell.Screen) bool {
|
|
return a.beforeDraw
|
|
}
|
|
|
|
// SetAfterDrawFunc installs a callback function which is invoked after the root
|
|
// primitive was drawn during screen updates.
|
|
//
|
|
// Provide nil to uninstall the callback function.
|
|
func (a *Application) SetAfterDrawFunc(handler func(screen tcell.Screen)) *Application {
|
|
a.afterDraw = handler
|
|
return a
|
|
}
|
|
|
|
// GetAfterDrawFunc returns the callback function installed with
|
|
// SetAfterDrawFunc() or nil if none has been installed.
|
|
func (a *Application) GetAfterDrawFunc() func(screen tcell.Screen) {
|
|
return a.afterDraw
|
|
}
|
|
|
|
// SetRoot sets the root primitive for this application. If "fullscreen" is set
|
|
// to true, the root primitive's position will be changed to fill the screen.
|
|
//
|
|
// This function must be called at least once or nothing will be displayed when
|
|
// the application starts.
|
|
//
|
|
// It also calls SetFocus() on the primitive.
|
|
func (a *Application) SetRoot(root Primitive, fullscreen bool) *Application {
|
|
a.Lock()
|
|
a.root = root
|
|
a.rootFullscreen = fullscreen
|
|
if a.screen != nil {
|
|
a.screen.Clear()
|
|
}
|
|
a.Unlock()
|
|
|
|
a.SetFocus(root)
|
|
|
|
return a
|
|
}
|
|
|
|
// ResizeToFullScreen resizes the given primitive such that it fills the entire
|
|
// screen.
|
|
func (a *Application) ResizeToFullScreen(p Primitive) *Application {
|
|
a.RLock()
|
|
width, height := a.screen.Size()
|
|
a.RUnlock()
|
|
p.SetRect(0, 0, width, height)
|
|
return a
|
|
}
|
|
|
|
// SetFocus sets the focus on a new primitive. All key events will be redirected
|
|
// to that primitive. Callers must ensure that the primitive will handle key
|
|
// events.
|
|
//
|
|
// Blur() will be called on the previously focused primitive. Focus() will be
|
|
// called on the new primitive.
|
|
func (a *Application) SetFocus(p Primitive) *Application {
|
|
a.Lock()
|
|
if a.focus != nil {
|
|
a.focus.Blur()
|
|
}
|
|
a.focus = p
|
|
if a.screen != nil {
|
|
a.screen.HideCursor()
|
|
}
|
|
a.Unlock()
|
|
if p != nil {
|
|
p.Focus(func(p Primitive) {
|
|
a.SetFocus(p)
|
|
})
|
|
}
|
|
|
|
return a
|
|
}
|
|
|
|
// GetFocus returns the primitive which has the current focus. If none has it,
|
|
// nil is returned.
|
|
func (a *Application) GetFocus() Primitive {
|
|
a.RLock()
|
|
defer a.RUnlock()
|
|
return a.focus
|
|
}
|
|
|
|
// QueueUpdate is used to synchronize changes to primitives by carrying an update function from separate goroutine to the Application event loop via channel
|
|
func (a *Application) QueueUpdate(f func()) *Application {
|
|
a.updates <- f
|
|
return a
|
|
}
|
|
|
|
// QueueEvent takes an Event instance and sends it to the Application event loop via channel
|
|
func (a *Application) QueueEvent(e tcell.Event) *Application {
|
|
a.events <- e
|
|
return a
|
|
}
|