package tview import ( "fmt" "os" "sync" "github.com/gdamore/tcell" ) // Application represents the top node of an application. // // It is not strictly required to use this class as none of the other classes // depend on it. However, it provides useful tools to set up an application and // plays nicely with all widgets. type Application struct { sync.RWMutex // The application's screen. screen tcell.Screen // Indicates whether the application's screen is currently active. running bool // The primitive which currently has the keyboard focus. focus Primitive // The root primitive to be seen on the screen. root Primitive // Whether or not the application resizes the root primitive. rootFullscreen bool // An optional capture function which receives a key event and returns the // event to be forwarded to the default input handler (nil if nothing should // be forwarded). inputCapture func(event *tcell.EventKey) *tcell.EventKey // An optional callback function which is invoked just before the root // primitive is drawn. beforeDraw func(screen tcell.Screen) bool // An optional callback function which is invoked after the root primitive // was drawn. afterDraw func(screen tcell.Screen) // Halts the event loop during suspended mode. suspendMutex sync.Mutex // Used to send screen events from separate goroutine to main event loop events chan tcell.Event // Used to send primitive updates from separate goroutines to the main event loop updates chan func() } // NewApplication creates and returns a new application. func NewApplication() *Application { return &Application{ events: make(chan tcell.Event, 100), updates: make(chan func(), 100), } } // SetInputCapture sets a function which captures all key events before they are // forwarded to the key event handler of the primitive which currently has // focus. This function can then choose to forward that key event (or a // different one) by returning it or stop the key event processing by returning // nil. // // Note that this also affects the default event handling of the application // itself: Such a handler can intercept the Ctrl-C event which closes the // applicatoon. func (a *Application) SetInputCapture(capture func(event *tcell.EventKey) *tcell.EventKey) *Application { a.inputCapture = capture return a } // GetInputCapture returns the function installed with SetInputCapture() or nil // if no such function has been installed. func (a *Application) GetInputCapture() func(event *tcell.EventKey) *tcell.EventKey { return a.inputCapture } // SetScreen allows you to provide your own tcell.Screen object. For most // applications, this is not needed and you should be familiar with // tcell.Screen when using this function. Run() will call Init() and Fini() on // the provided screen object. // // This function is typically called before calling Run(). Calling it while an // application is running will switch the application to the new screen. Fini() // will be called on the old screen and Init() on the new screen (errors // returned by Init() will lead to a panic). // // Note that calling Suspend() will invoke Fini() on your screen object and it // will not be restored when suspended mode ends. Instead, a new default screen // object will be created. func (a *Application) SetScreen(screen tcell.Screen) *Application { a.Lock() defer a.Unlock() if a.running { a.screen.Fini() } a.screen = screen if a.running { if err := a.screen.Init(); err != nil { panic(err) } } return a } // Run starts the application and thus the event loop. This function returns // when Stop() was called. func (a *Application) Run() error { var err error a.Lock() // Make a screen if there is none yet. if a.screen == nil { a.screen, err = tcell.NewScreen() if err != nil { a.Unlock() return err } } if err = a.screen.Init(); err != nil { a.Unlock() return err } a.running = true // We catch panics to clean up because they mess up the terminal. defer func() { if p := recover(); p != nil { if a.screen != nil { a.screen.Fini() } a.running = false panic(p) } }() // Draw the screen for the first time. a.Unlock() a.Draw() // Separate loop to wait for screen events go func() { for { // Do not poll events during suspend mode a.suspendMutex.Lock() a.RLock() screen := a.screen a.RUnlock() if screen == nil { a.suspendMutex.Unlock() // send signal to stop main event loop a.QueueEvent(nil) break } // Wait for next event. a.QueueEvent(screen.PollEvent()) a.suspendMutex.Unlock() } }() // Start event loop. loop: for { select { case event := <-a.events: if event == nil { // The screen was finalized. Exit the loop. break loop } switch event := event.(type) { case *tcell.EventKey: a.RLock() p := a.focus a.RUnlock() // Intercept keys. if a.inputCapture != nil { event = a.inputCapture(event) if event == nil { break loop // Don't forward event. } } // Ctrl-C closes the application. if event.Key() == tcell.KeyCtrlC { a.Stop() } // Pass other key events to the currently focused primitive. if p != nil { if handler := p.InputHandler(); handler != nil { handler(event, func(p Primitive) { a.SetFocus(p) }) a.Draw() } } case *tcell.EventResize: a.RLock() screen := a.screen a.RUnlock() screen.Clear() a.Draw() } case updater := <-a.updates: updater() a.Draw() } } return nil } // Stop stops the application, causing Run() to return. func (a *Application) Stop() { a.Lock() defer a.Unlock() if a.screen == nil { return } a.screen.Fini() a.screen = nil a.running = false } // Suspend temporarily suspends the application by exiting terminal UI mode and // invoking the provided function "f". When "f" returns, terminal UI mode is // entered again and the application resumes. // // A return value of true indicates that the application was suspended and "f" // was called. If false is returned, the application was already suspended, // terminal UI mode was not exited, and "f" was not called. func (a *Application) Suspend(f func()) bool { a.RLock() if a.screen == nil { // Screen has not yet been initialized. a.RUnlock() return false } // Enter suspended mode. a.suspendMutex.Lock() defer a.suspendMutex.Unlock() a.RUnlock() a.Stop() // Deal with panics during suspended mode. Exit the program. defer func() { if p := recover(); p != nil { fmt.Println(p) os.Exit(1) } }() // Wait for "f" to return. f() // Make a new screen and redraw. a.Lock() var err error a.screen, err = tcell.NewScreen() if err != nil { a.Unlock() panic(err) } if err = a.screen.Init(); err != nil { a.Unlock() panic(err) } a.running = true a.Unlock() a.Draw() // Continue application loop. return true } // Draw refreshes the screen. It calls the Draw() function of the application's // root primitive and then syncs the screen buffer. func (a *Application) Draw() *Application { a.Lock() defer a.Unlock() screen := a.screen root := a.root fullscreen := a.rootFullscreen before := a.beforeDraw after := a.afterDraw // Maybe we're not ready yet or not anymore. if screen == nil || root == nil { return a } // Resize if requested. if fullscreen && root != nil { width, height := screen.Size() root.SetRect(0, 0, width, height) } // Call before handler if there is one. if before != nil { if before(screen) { screen.Show() return a } } // Draw all primitives. root.Draw(screen) // Call after handler if there is one. if after != nil { after(screen) } // Sync screen. screen.Show() return a } // SetBeforeDrawFunc installs a callback function which is invoked just before // the root primitive is drawn during screen updates. If the function returns // true, drawing will not continue, i.e. the root primitive will not be drawn // (and an after-draw-handler will not be called). // // Note that the screen is not cleared by the application. To clear the screen, // you may call screen.Clear(). // // Provide nil to uninstall the callback function. func (a *Application) SetBeforeDrawFunc(handler func(screen tcell.Screen) bool) *Application { a.beforeDraw = handler return a } // GetBeforeDrawFunc returns the callback function installed with // SetBeforeDrawFunc() or nil if none has been installed. func (a *Application) GetBeforeDrawFunc() func(screen tcell.Screen) bool { return a.beforeDraw } // SetAfterDrawFunc installs a callback function which is invoked after the root // primitive was drawn during screen updates. // // Provide nil to uninstall the callback function. func (a *Application) SetAfterDrawFunc(handler func(screen tcell.Screen)) *Application { a.afterDraw = handler return a } // GetAfterDrawFunc returns the callback function installed with // SetAfterDrawFunc() or nil if none has been installed. func (a *Application) GetAfterDrawFunc() func(screen tcell.Screen) { return a.afterDraw } // SetRoot sets the root primitive for this application. If "fullscreen" is set // to true, the root primitive's position will be changed to fill the screen. // // This function must be called at least once or nothing will be displayed when // the application starts. // // It also calls SetFocus() on the primitive. func (a *Application) SetRoot(root Primitive, fullscreen bool) *Application { a.Lock() a.root = root a.rootFullscreen = fullscreen if a.screen != nil { a.screen.Clear() } a.Unlock() a.SetFocus(root) return a } // ResizeToFullScreen resizes the given primitive such that it fills the entire // screen. func (a *Application) ResizeToFullScreen(p Primitive) *Application { a.RLock() width, height := a.screen.Size() a.RUnlock() p.SetRect(0, 0, width, height) return a } // SetFocus sets the focus on a new primitive. All key events will be redirected // to that primitive. Callers must ensure that the primitive will handle key // events. // // Blur() will be called on the previously focused primitive. Focus() will be // called on the new primitive. func (a *Application) SetFocus(p Primitive) *Application { a.Lock() if a.focus != nil { a.focus.Blur() } a.focus = p if a.screen != nil { a.screen.HideCursor() } a.Unlock() if p != nil { p.Focus(func(p Primitive) { a.SetFocus(p) }) } return a } // GetFocus returns the primitive which has the current focus. If none has it, // nil is returned. func (a *Application) GetFocus() Primitive { a.RLock() defer a.RUnlock() return a.focus } // QueueUpdate is used to synchronize changes to primitives by carrying an update function from separate goroutine to the Application event loop via channel func (a *Application) QueueUpdate(f func()) *Application { a.updates <- f return a } // QueueEvent takes an Event instance and sends it to the Application event loop via channel func (a *Application) QueueEvent(e tcell.Event) *Application { a.events <- e return a }