77 KiB
Tutorial 13 - Integrated Testing
tl;dr
- We implement our own test framework using
Rust
's custom_test_frameworks feature by enablingUnit Tests
andIntegration Tests
usingQEMU
. - It is also possible to have test automation for the kernel's
console
(provided overUART
in our case): Sending strings/characters to the console and expecting specific answers in return.
Table of Contents
- Introduction
- Challenges
- Implementation
- Test it
- Diff to previous
Introduction
Through the course of the previous tutorials, we silently started to adopt a kind of anti-pattern: Using the kernel's main function to not only boot the target, but also test or showcase functionality. For example:
- Stalling execution during boot to test the kernel's timekeeping code by spinning for 1 second.
- Willingly causing exceptions to see the exception handler running.
The feature set of the kernel is now rich enough so that it makes sense to introduce proper testing modeled after Rust's native testing framework. This tutorial extends our kernel with three basic testing facilities:
- Classic
Unit Tests
. - Integration Tests (self-contained tests stored in the
$CRATE/tests/
directory). Console Tests
. These are integration tests acting on external stimuli - akaconsole
input. Sending strings/characters to the console and expecting specific answers in return.
Challenges
Testing Rust #![no_std]
code like our kernel is, at the point of writing this tutorial, not an
easy endeavor. The short version is: We cannot use Rust's native testing framework straight away.
Utilizing the #[test]
attribute macro and running cargo test
would throw compilation errors,
because there are dependencies on the standard library.
We have to fall back to Rust's unstable custom_test_frameworks feature. It relieves us from
dependencies on the standard library, but comes at the cost of having a reduced feature set. Instead
of annotating functions with #[test]
, the #[test_case]
attribute must be used. Additionally, we
need to write a test_runner
function, which is supposed to execute all the functions annotated
with #[test_case]
. This is barely enough to get Unit Tests
running, though. There will be some
more challenges that need solving for getting Integration Tests
running as well.
Please note that for automation purposes, all testing will be done in QEMU
and not on real
hardware.
Acknowledgements
On this occasion, kudos to @phil-opp for his x86-based testing article. It helped a lot in putting together this tutorial. Please go ahead and read it for a different perspective and additional insights.
Implementation
We introduce a new Makefile
target:
$ make test
In essence, make test
will execute cargo test
instead of cargo rustc
. The details will be
explained in due course. The rest of the tutorial will explain as chronologically as possible what
happens when make test
aka cargo test
runs.
Test Organization
Until now, our kernel was a so-called binary crate
. As explained in the official Rust book, this
crate type disallows having integration tests
. Quoting the book:
If our project is a binary crate that only contains a src/main.rs file and doesn’t have a src/lib.rs file, we can’t create integration tests in the tests directory and bring functions defined in the src/main.rs file into scope with a
use
statement. Only library crates expose functions that other crates can use; binary crates are meant to be run on their own.
This is one of the reasons Rust projects that provide a binary have a straightforward src/main.rs file that calls logic that lives in the src/lib.rs file. Using that structure, integration tests can test the library crate with
use
to make the important functionality available. If the important functionality works, the small amount of code in the src/main.rs file will work as well, and that small amount of code doesn’t need to be tested.
So let's do that first: We add a lib.rs
to our crate that aggregates and exports the lion's share
of the kernel code. The main.rs
file is stripped down to the minimum. It only keeps the
kernel_init() -> !
and kernel_main() -> !
functions, everything else is brought into scope with
use
statements.
Since it is not possible to use kernel
as the name for both the library and the binary part of the
crate, new entries in Cargo.toml
are needed to differentiate the names. What's more, cargo test
would try to compile and run unit tests
for both. In our case, it will be sufficient to have all
the unit test code in lib.rs
, so test generation for main.rs
can be disabled in Cargo.toml
as
well through the test
flag:
[lib]
name = "libkernel"
test = true
[[bin]]
name = "kernel"
test = false
Enabling custom_test_frameworks
for Unit Tests
In lib.rs
, we add the following headers to get started with custom_test_frameworks
:
// Testing
#![cfg_attr(test, no_main)]
#![cfg_attr(test, feature(slice_ptr_range))]
#![feature(custom_test_frameworks)]
#![reexport_test_harness_main = "test_main"]
#![test_runner(crate::test_runner)]
Since this is a library now, we do not keep the #![no_main]
inner attribute that main.rs
has,
because a library has no main()
entry function, so the attribute does not apply. When compiling
for testing, though, it is still needed. The reason is that cargo test
basically turns lib.rs
into a binary again by inserting a generated main()
function (which is then calling a function
that runs all the unit tests, but more about that in a second...).
However, since our kernel code overrides the compiler-inserted main
shim by way of using
#![no_main]
, we need the same when cargo test
is producing its test kernel binary. After all,
what we want is a minimal kernel that boots on the target and runs its own unit tests. Therefore, we
conditionally set this attribute (#![cfg_attr(test, no_main)]
) when the test
flag is set, which
it is when cargo test
runs.
The Unit Test Runner
The #![test_runner(crate::test_runner)]
attribute declares the path of the test runner function
that we are supposed to provide. This is the one that will be called by the cargo test
generated
main()
function. Here is the implementation in lib.rs
:
/// The default runner for unit tests.
pub fn test_runner(tests: &[&test_types::UnitTest]) {
println!("Running {} tests", tests.len());
println!("-------------------------------------------------------------------\n");
for (i, test) in tests.iter().enumerate() {
print!("{:>3}. {:.<58}", i + 1, test.name);
// Run the actual test.
(test.test_func)();
// Failed tests call panic!(). Execution reaches here only if the test has passed.
println!("[ok]")
}
}
The function signature shows that test_runner
takes one argument: A slice of
test_types::UnitTest
references. This type definition lives in an external crate stored at
$ROOT/test_types
. It is external because the type is also needed for a self-made procedural
macro that we'll use to write unit tests, and procedural macros have to live in their own crate.
So to avoid a circular dependency between kernel and proc-macro, this split was needed. Anyways,
here is the type definition:
/// Unit test container.
pub struct UnitTest {
/// Name of the test.
pub name: &'static str,
/// Function pointer to the test.
pub test_func: fn(),
}
A UnitTest
provides a name and a classic function pointer to the unit test function. The
test_runner
just iterates over the slice, prints the respective test's name and calls the test
function.
The convetion is that as long as the test function does not panic!
, the test was successful.
Calling the Test main()
Function
The last of the attributes we added is #![reexport_test_harness_main = "test_main"]
. Remember that
our kernel uses the no_main
attribute, and that we also set it for the test compilation. We did
that because we wrote our own _start()
function (in aarch64.rs
), which kicks off the following
call chain during kernel boot:
Function | File | |
---|---|---|
1. | _start() |
lib.rs |
2. | (some more arch64 code) | lib.rs |
3. | runtime_init() |
lib.rs |
4. | kernel_init() |
main.rs |
5. | kernel_main() |
main.rs |
A function named main
is never called. Hence, the main()
function generated by cargo test
would be silently dropped, and therefore the tests would never be executed. As you can see,
runtime_init()
is the last function residing in our carved-out lib.rs
, and it calls into
kernel_init()
. So in order to get the tests to execute, we add a test-environment version of
kernel_init()
to lib.rs
as well (conditional compilation ensures it is only present when the
test flag is set), and call the cargo test
generated main()
function from there.
This is where #![reexport_test_harness_main = "test_main"]
finally comes into picture. It declares
the name of the generated main function so that we can manually call it. Here is the final
implementation in lib.rs
:
/// The `kernel_init()` for unit tests. Called from `runtime_init()`.
#[cfg(test)]
#[no_mangle]
unsafe fn kernel_init() -> ! {
bsp::console::qemu_bring_up_console();
test_main();
cpu::qemu_exit_success()
}
Note that we first call bsp::console::qemu_bring_up_console()
. Since we are running all our tests
inside QEMU
, we need to ensure that whatever peripheral implements the kernel's console
interface is initialized, so that we can print from our tests. If you recall tutorial 03, bringing
up peripherals in QEMU
might not need the full initialization as is needed on real hardware
(setting clocks, config registers, etc...) due to the abstractions in QEMU
's emulation code. So
this is an opportunity to cut down on setup code.
As a matter of fact, for the Raspberrys
, nothing needs to be done and the function is empy. But
this might be different for other hardware emulated by QEMU, so it makes sense to introduce the
function now to make it easier in case new BSPs
are added to the kernel in the future.
Next, the reexported test_main()
is called, which will call our test_runner()
which finally
prints the unit test names and executes them.
Quitting QEMU with user-defined Exit Codes
Let's recap where we are right now:
We've enabled custom_test_frameworks
in lib.rs
to a point where, when using make test
, the
code gets compiled to a test kernel binary that eventually executes all the (yet-to-be-defined)
UnitTest
instances by executing all the way from _start()
to our test_runner()
function.
Through mechanisms that are explained later, cargo
will now instantiate a QEMU
process that
exectues this test kernel. The question now is: How is test success/failure communicated to cargo
?
Answer: cargo
inspects QEMU
's exit status:
0
translates to testing was successful.non-0
means failure.
Hence, we need a clever trick now so that our Rust kernel code can get QEMU
to exit itself with an
exit status that the kernel code supplies. In @phil-opp's testing article, you learned how to do
this for x86 QEMU
systems by using a special ISA
debug-exit device. Unfortunately, we can't
have that one for our aarch64
system because it is not compatible.
In our case, we can leverage the ARM semihosting emulation of QEMU
and do a SYS_EXIT
semihosting call with an additional parameter for the exit code. I've written a separate crate,
qemu-exit, to do this. So let us import it and utilize it in _arch/aarch64/cpu.rs
to provide the
following exit calls for the kernel:
//--------------------------------------------------------------------------------------------------
// Testing
//--------------------------------------------------------------------------------------------------
use qemu_exit::QEMUExit;
const QEMU_EXIT_HANDLE: qemu_exit::AArch64 = qemu_exit::AArch64::new();
/// Make the host QEMU binary execute `exit(1)`.
pub fn qemu_exit_failure() -> ! {
QEMU_EXIT_HANDLE.exit_failure()
}
/// Make the host QEMU binary execute `exit(0)`.
pub fn qemu_exit_success() -> ! {
QEMU_EXIT_HANDLE.exit_success()
}
Click here in case you are interested in the implementation. Note that for the functions to work,
the -semihosting
flag must be added to the QEMU
invocation.
Exiting Unit Tests
Unit test failure shall be triggered by the panic!
macro, either directly or by way of using
assert!
macros. Until now, our panic!
implementation finally called cpu::wait_forever()
to
safely park the panicked CPU core in a busy loop. This can't be used for the unit tests, because
cargo
would wait forever for QEMU
to exit and stall the whole test run. Again, conditional
compilation is used to differentiate between a release and testing version of how a panic!
concludes. Here is the new testing version:
/// The point of exit when the library is compiled for testing.
#[cfg(test)]
#[no_mangle]
fn _panic_exit() -> ! {
cpu::qemu_exit_failure()
}
In case none of the unit tests panicked, lib.rs
's kernel_init()
calls
cpu::qemu_exit_success()
to successfully conclude the unit test run.
Controlling Test Kernel Execution
Now is a good time to catch up on how the test kernel binary is actually being executed. Normally,
cargo test
would try to execute the compiled binary as a normal child process. This would fail
horribly because we build a kernel, and not a userspace process. Also, chances are very high that
you sit in front of an x86
machine, whereas the RPi kernel is AArch64
.
Therefore, we need to install some hooks that make sure the test kernel gets executed inside QEMU
,
quite like it is done for the existing make qemu
target that is in place since tutorial 1. The
first step is to add a new file to the project, .cargo/config.toml
:
[target.'cfg(target_os = "none")']
runner = "target/kernel_test_runner.sh"
Instead of executing a compilation result directly, the runner
flag will instruct cargo
to
delegate the execution. Using the setting depicted above, target/kernel_test_runner.sh
will be
executed and given the full path to the compiled test kernel as the first command line argument.
The file kernel_test_runner.sh
does not exist by default. We generate it on demand throguh the
make test
target:
define KERNEL_TEST_RUNNER
#!/usr/bin/env bash
$(OBJCOPY_CMD) $$1 $$1.img
TEST_BINARY=$$(echo $$1.img | sed -e 's/.*target/target/g')
$(DOCKER_TEST) ruby tests/runner.rb $(EXEC_QEMU) $(QEMU_TEST_ARGS) -kernel $$TEST_BINARY
endef
export KERNEL_TEST_RUNNER
test:
@mkdir -p target
@echo "$$KERNEL_TEST_RUNNER" > target/kernel_test_runner.sh
@chmod +x target/kernel_test_runner.sh
RUSTFLAGS="$(RUSTFLAGS_PEDANTIC)" $(TEST_CMD) $(TEST_ARG)
It first does the standard objcopy
step to strip the ELF
down to a raw binary. Just like in all
the other Makefile targets. Next, the script generates a relative path from the absolute path
provided to it by cargo
, and finally compiles a docker
command to execute the test kernel. For
reference, here it is fully resolved for an RPi3 BSP
:
docker run -i --rm -v /opt/rust-raspberrypi-OS-tutorials/13_integrated_testing:/work/tutorial -w /work/tutorial rustembedded/osdev-utils ruby tests/runner.rb qemu-system-aarch64 -M raspi3 -serial stdio -display none -semihosting -kernel $TEST_BINARY
We're still not done with all the redirections. Spotted the ruby tests/runner.rb
part that gets
excuted inside Docker?
Wrapping QEMU Test Execution
runner.rb
is a Ruby wrapper script around QEMU
that, for unit tests, catches the case that a
test gets stuck, e.g. in an unintentional busy loop or a crash. If runner.rb
does not observe any
output of the test kernel for 5 seconds
, it cancels the execution and reports a failure back to
cargo
. If QEMU
exited itself by means of aarch64::exit_success() / aarch64::exit_failure()
,
the respective exit status code is passed through. The essential part happens here in class RawTest
:
def exec
error = 'Timed out waiting for test'
io = IO.popen(@qemu_cmd)
while IO.select([io], nil, nil, MAX_WAIT_SECS)
begin
@output << io.read_nonblock(1024)
rescue EOFError
io.close
error = $CHILD_STATUS.to_i != 0
break
end
end
Writing Unit Tests
Alright, that's a wrap for the whole chain from make test
all the way to reporting the test exit
status back to cargo test
. It is a lot to digest already, but we haven't even learned to write
Unit Tests
yet.
In essence, it is almost like in std
environments, with the difference that #[test]
can't be
used, because it is part of the standard library. The no_std
replacement attribute provided by
custom_test_frameworks
is #[test_case]
. You can put #[test_case]
before functions, constants
or statics (you have to decide for one and stick with it). Each attributed item is added to the
"list" that is then passed to the test_runner
function.
As you learned earlier, we decided that our tests shall be instances of test_types::UnitTest
. Here
is the type definition again:
/// Unit test container.
pub struct UnitTest {
/// Name of the test.
pub name: &'static str,
/// Function pointer to the test.
pub test_func: fn(),
}
So what we could do now is write something like:
#[cfg(test)]
mod tests {
use super::*;
#[test_case]
const TEST1: test_types::UnitTest = test_types::UnitTest {
name: "test_runner_executes_in_kernel_mode",
test_func: || {
let (level, _) = current_privilege_level();
assert!(level == PrivilegeLevel::Kernel)
},
};
}
Since this is a bit boiler-platy with the const and name definition, let's write a procedural
macro named #[kernel_test]
to simplify this. It should work this way:
- Must be put before functions that take no arguments and return nothing.
- Automatically constructs a
const UnitTest
from attributed functions like shown above by:- Converting the function name to the
name
member of theUnitTest
struct. - Populating the
test_func
member with a closure that executes the body of the attributed function.
- Converting the function name to the
For the sake of brevity, we're not going to discuss the macro implementation. The source is in the test-macros crate if you're interested in it. Using the macro, the example shown before now boils down to this (this is now an actual example from exception.rs:
#[cfg(test)]
mod tests {
use super::*;
use test_macros::kernel_test;
/// Libkernel unit tests must execute in kernel mode.
#[kernel_test]
fn test_runner_executes_in_kernel_mode() {
let (level, _) = current_privilege_level();
assert!(level == PrivilegeLevel::Kernel)
}
}
Note that since proc macros need to live in their own crates, we need to create a new one at
$ROOT/test-macros
and save it there.
Aaaaaand that's how you write unit tests. We're finished with that part for good now 🙌.
Integration Tests
We are still not done with the tutorial, though 😱.
Integration tests need some special attention here and there too. As you already learned, they live
in $CRATE/tests/
. Each .rs
file in there gets compiled into its own test kernel binary and
executed separately by cargo test
. The code in the integration tests includes the library part of
our kernel (libkernel
) through use
statements.
Also note that the entry point for each integration test
must be the kernel_init()
function
again, just like in the unit test
case.
Test Harness
By default, cargo test
will pull in the test harness (that's the official name for the generated
main()
function) into integration tests as well. This gives you a further means of partitioning
your test code into individual chunks. For example, take a look at tests/01_timer_sanity.rs
:
//! Timer sanity tests.
#![feature(custom_test_frameworks)]
#![no_main]
#![no_std]
#![reexport_test_harness_main = "test_main"]
#![test_runner(libkernel::test_runner)]
mod panic_exit_failure;
use core::time::Duration;
use libkernel::{bsp, cpu, time, time::interface::TimeManager};
use test_macros::kernel_test;
#[no_mangle]
unsafe fn kernel_init() -> ! {
bsp::console::qemu_bring_up_console();
// Depending on CPU arch, some timer bring-up code could go here. Not needed for the RPi.
test_main();
cpu::qemu_exit_success()
}
/// Simple check that the timer is running.
#[kernel_test]
fn timer_is_counting() {
assert!(time::time_manager().uptime().as_nanos() > 0)
}
/// Timer resolution must be sufficient.
#[kernel_test]
fn timer_resolution_is_sufficient() {
assert!(time::time_manager().resolution().as_nanos() < 100)
}
Note how the test_runner
from libkernel
is pulled in through
#![test_runner(libkernel::test_runner)]
.
No Test Harness
For some tests, however, it is not needed to have the harness, because there is no need or
possibility to partition the test into individual pieces. In this case, all the test code can live
in kernel_init()
, and harness generation can be turned off through Cargo.toml
. This tutorial
introduces two tests that don't need a harness. Here is how harness generation is turned off for
them:
# List of tests without harness.
[[test]]
name = "00_console_sanity"
harness = false
[[test]]
name = "02_exception_sync_page_fault"
harness = false
Overriding Panic Behavior
It is also important to understand that the libkernel
made available to the integration tests is
the release version. Therefore, it won't contain any code attributed with #[cfg(test)]
!
One of the implications of this is that the panic handler
provided by libkernel
will be the
version from the release kernel that spins forever, and not the test version that exits QEMU
.
One way to navigate around this is to declare the release version of the panic exit function in
lib.rs
as a weak symbol:
#[cfg(not(test))]
#[linkage = "weak"]
#[no_mangle]
fn _panic_exit() -> ! {
cpu::wait_forever()
}
Integration tests in $CRATE/tests/
can now override it according to their needs, because depending
on the kind of test, a panic!
could mean success or failure. For example,
tests/02_exception_sync_page_fault.rs
is intentionally causing a page fault, so the wanted outcome
is a panic!
. Here is the whole test (minus some inline comments):
//! Page faults must result in synchronous exceptions.
#![feature(format_args_nl)]
#![no_main]
#![no_std]
mod panic_exit_success;
use libkernel::{bsp, cpu, exception, memory, println};
#[no_mangle]
unsafe fn kernel_init() -> ! {
use memory::mmu::interface::MMU;
bsp::console::qemu_bring_up_console();
println!("Testing synchronous exception handling by causing a page fault");
println!("-------------------------------------------------------------------\n");
exception::handling_init();
if let Err(string) = memory::mmu::mmu().init() {
println!("MMU: {}", string);
cpu::qemu_exit_failure()
}
println!("Writing beyond mapped area to address 9 GiB...");
let big_addr: u64 = 9 * 1024 * 1024 * 1024;
core::ptr::read_volatile(big_addr as *mut u64);
// If execution reaches here, the memory access above did not cause a page fault exception.
cpu::qemu_exit_failure()
}
The _panic_exit()
version that makes QEMU
return 0
(indicating test success) is pulled in by
mod panic_exit_success;
. The counterpart would be mod panic_exit_failure;
. We provide both in
the tests
folder, so each integration test can import the one that it needs.
Console Tests
As the kernel or OS grows, it will be more and more interesting to test user/kernel interaction
through the serial console. That is, sending strings/characters to the console and expecting
specific answers in return. The runner.rb
wrapper script provides infrastructure to do this with
little overhead. It basically works like this:
- For each integration test, check if a companion file to the
.rs
test file exists.- A companion file has the same name, but ends in
.rb
. - The companion file contains one or more console subtests.
- A companion file has the same name, but ends in
- If it exists, load the file to dynamically import the console subtests.
- Spawn
QEMU
and attach to the serial console. - Run the console subtests.
Here is an excerpt from 00_console_sanity.rb
showing a subtest that does a handshake with the
kernel over the console:
TIMEOUT_SECS = 3
# Verify sending and receiving works as expected.
class TxRxHandshake
def name
'Transmit and Receive handshake'
end
def run(qemu_out, qemu_in)
qemu_in.write_nonblock('ABC')
raise('TX/RX test failed') if qemu_out.expect('OK1234', TIMEOUT_SECS).nil?
end
end
The subtest first sends "ABC"
over the console to the kernel, and then expects to receive
"OK1234"
back. On the kernel side, it looks like this in 00_console_sanity.rs
:
#![feature(format_args_nl)]
#![no_main]
#![no_std]
mod panic_exit_failure;
use libkernel::{bsp, console, print};
#[no_mangle]
unsafe fn kernel_init() -> ! {
use bsp::console::{console, qemu_bring_up_console};
use console::interface::*;
qemu_bring_up_console();
// Handshake
assert_eq!(console().read_char(), 'A');
assert_eq!(console().read_char(), 'B');
assert_eq!(console().read_char(), 'C');
print!("OK1234");
Test it
Believe it or not, that is all. There are three ways you can run tests:
make test
will run all tests back-to-back.TEST=unit make test
will runlibkernel
's unit tests.TEST=TEST_NAME make test
will run a specficic integration test.- For example,
TEST=01_timer_sanity make test
- For example,
$ make test
[...]
RUSTFLAGS="-C link-arg=-Tsrc/bsp/raspberrypi/link.ld -C target-cpu=cortex-a53 -D warnings -D missing_docs" cargo test --target=aarch64-unknown-none-softfloat --features bsp_rpi3 --release
Finished release [optimized] target(s) in 0.01s
Running target/aarch64-unknown-none-softfloat/release/deps/libkernel-4cc6412ddf631982
-------------------------------------------------------------------
🦀 Running 8 tests
-------------------------------------------------------------------
1. virt_mem_layout_sections_are_64KiB_aligned................[ok]
2. virt_mem_layout_has_no_overlaps...........................[ok]
3. test_runner_executes_in_kernel_mode.......................[ok]
4. size_of_tabledescriptor_equals_64_bit.....................[ok]
5. size_of_pagedescriptor_equals_64_bit......................[ok]
6. kernel_tables_in_bss......................................[ok]
7. zero_volatile_works.......................................[ok]
8. bss_section_is_sane.......................................[ok]
-------------------------------------------------------------------
✅ Success: libkernel
-------------------------------------------------------------------
Running target/aarch64-unknown-none-softfloat/release/deps/00_console_sanity-557819b436f15a18
-------------------------------------------------------------------
🦀 Running 3 console-based tests
-------------------------------------------------------------------
1. Transmit and Receive handshake............................[ok]
2. Transmit statistics.......................................[ok]
3. Receive statistics........................................[ok]
-------------------------------------------------------------------
✅ Success: 00_console_sanity
-------------------------------------------------------------------
Running target/aarch64-unknown-none-softfloat/release/deps/01_timer_sanity-1e25e7d559a9009f
-------------------------------------------------------------------
🦀 Running 3 tests
-------------------------------------------------------------------
1. timer_is_counting.........................................[ok]
2. timer_resolution_is_sufficient............................[ok]
3. spin_accuracy_check_1_second..............................[ok]
-------------------------------------------------------------------
✅ Success: 01_timer_sanity
-------------------------------------------------------------------
Running target/aarch64-unknown-none-softfloat/release/deps/02_exception_sync_page_fault-14172ce39b3fae1c
-------------------------------------------------------------------
🦀 Testing synchronous exception handling by causing a page fault
-------------------------------------------------------------------
Writing beyond mapped area to address 9 GiB...
Kernel panic:
CPU Exception!
FAR_EL1: 0x0000000240000000
ESR_EL1: 0x96000004
[...]
-------------------------------------------------------------------
✅ Success: 02_exception_sync_page_fault
-------------------------------------------------------------------
Diff to previous
diff -uNr 12_exceptions_part1_groundwork/.cargo/config.toml 13_integrated_testing/.cargo/config.toml
--- 12_exceptions_part1_groundwork/.cargo/config.toml
+++ 13_integrated_testing/.cargo/config.toml
@@ -0,0 +1,2 @@
+[target.'cfg(target_os = "none")']
+runner = "target/kernel_test_runner.sh"
diff -uNr 12_exceptions_part1_groundwork/Cargo.toml 13_integrated_testing/Cargo.toml
--- 12_exceptions_part1_groundwork/Cargo.toml
+++ 13_integrated_testing/Cargo.toml
@@ -15,11 +15,38 @@
##--------------------------------------------------------------------------------------------------
[dependencies]
+qemu-exit = "1.0.x"
+test-types = { path = "test-types" }
# Optional dependencies
-register = { version = "0.5.x", optional = true }
+register = { version = "0.5.x", features = ["no_std_unit_tests"], optional = true }
# Platform specific dependencies
[target.'cfg(target_arch = "aarch64")'.dependencies]
cortex-a = { version = "4.x.x" }
+##--------------------------------------------------------------------------------------------------
+## Testing
+##--------------------------------------------------------------------------------------------------
+
+[dev-dependencies]
+test-macros = { path = "test-macros" }
+
+# Unit tests are done in the library part of the kernel.
+[lib]
+name = "libkernel"
+test = true
+
+# Disable unit tests for the kernel binary.
+[[bin]]
+name = "kernel"
+test = false
+
+# List of tests without harness.
+[[test]]
+name = "00_console_sanity"
+harness = false
+
+[[test]]
+name = "02_exception_sync_page_fault"
+harness = false
diff -uNr 12_exceptions_part1_groundwork/Makefile 13_integrated_testing/Makefile
--- 12_exceptions_part1_groundwork/Makefile
+++ 13_integrated_testing/Makefile
@@ -18,6 +18,7 @@
QEMU_BINARY = qemu-system-aarch64
QEMU_MACHINE_TYPE = raspi3
QEMU_RELEASE_ARGS = -serial stdio -display none
+ QEMU_TEST_ARGS = $(QEMU_RELEASE_ARGS) -semihosting
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi3.cfg
JTAG_BOOT_IMAGE = ../X1_JTAG_boot/jtag_boot_rpi3.img
LINKER_FILE = src/bsp/raspberrypi/link.ld
@@ -28,6 +29,7 @@
QEMU_BINARY = qemu-system-aarch64
QEMU_MACHINE_TYPE =
QEMU_RELEASE_ARGS = -serial stdio -display none
+ QEMU_TEST_ARGS = $(QEMU_RELEASE_ARGS) -semihosting
OPENOCD_ARG = -f /openocd/tcl/interface/ftdi/olimex-arm-usb-tiny-h.cfg -f /openocd/rpi4.cfg
JTAG_BOOT_IMAGE = ../X1_JTAG_boot/jtag_boot_rpi4.img
LINKER_FILE = src/bsp/raspberrypi/link.ld
@@ -37,6 +39,17 @@
# Export for build.rs
export LINKER_FILE
+# Testing-specific arguments
+ifdef TEST
+ ifeq ($(TEST),unit)
+ TEST_ARG = --lib
+ else
+ TEST_ARG = --test $(TEST)
+ endif
+endif
+
+QEMU_MISSING_STRING = "This board is not yet supported for QEMU."
+
RUSTFLAGS = -C link-arg=-T$(LINKER_FILE) $(RUSTC_MISC_ARGS)
RUSTFLAGS_PEDANTIC = $(RUSTFLAGS) -D warnings -D missing_docs
@@ -48,6 +61,7 @@
DOC_CMD = cargo doc $(COMPILER_ARGS)
CLIPPY_CMD = cargo clippy $(COMPILER_ARGS)
CHECK_CMD = cargo check $(COMPILER_ARGS)
+TEST_CMD = cargo test $(COMPILER_ARGS)
OBJCOPY_CMD = rust-objcopy \
--strip-all \
-O binary
@@ -55,18 +69,20 @@
KERNEL_ELF = target/$(TARGET)/release/kernel
DOCKER_IMAGE = rustembedded/osdev-utils
-DOCKER_CMD = docker run -it --rm -v $(shell pwd):/work/tutorial -w /work/tutorial
+DOCKER_CMD_TEST = docker run -i --rm -v $(shell pwd):/work/tutorial -w /work/tutorial
+DOCKER_CMD_USER = $(DOCKER_CMD_TEST) -t
DOCKER_ARG_DIR_UTILS = -v $(shell pwd)/../utils:/work/utils
DOCKER_ARG_DIR_JTAG = -v $(shell pwd)/../X1_JTAG_boot:/work/X1_JTAG_boot
DOCKER_ARG_DEV = --privileged -v /dev:/dev
DOCKER_ARG_NET = --network host
-DOCKER_QEMU = $(DOCKER_CMD) $(DOCKER_IMAGE)
-DOCKER_GDB = $(DOCKER_CMD) $(DOCKER_ARG_NET) $(DOCKER_IMAGE)
+DOCKER_QEMU = $(DOCKER_CMD_USER) $(DOCKER_IMAGE)
+DOCKER_GDB = $(DOCKER_CMD_USER) $(DOCKER_ARG_NET) $(DOCKER_IMAGE)
+DOCKER_TEST = $(DOCKER_CMD_TEST) $(DOCKER_IMAGE)
# Dockerize commands that require USB device passthrough only on Linux
ifeq ($(UNAME_S),Linux)
- DOCKER_CMD_DEV = $(DOCKER_CMD) $(DOCKER_ARG_DEV)
+ DOCKER_CMD_DEV = $(DOCKER_CMD_USER) $(DOCKER_ARG_DEV)
DOCKER_CHAINBOOT = $(DOCKER_CMD_DEV) $(DOCKER_ARG_DIR_UTILS) $(DOCKER_IMAGE)
DOCKER_JTAGBOOT = $(DOCKER_CMD_DEV) $(DOCKER_ARG_DIR_UTILS) $(DOCKER_ARG_DIR_JTAG) $(DOCKER_IMAGE)
@@ -78,8 +94,8 @@
EXEC_QEMU = $(QEMU_BINARY) -M $(QEMU_MACHINE_TYPE)
EXEC_MINIPUSH = ruby ../utils/minipush.rb
-.PHONY: all $(KERNEL_ELF) $(KERNEL_BIN) doc qemu chainboot jtagboot openocd gdb gdb-opt0 clippy \
- clean readelf objdump nm check
+.PHONY: all $(KERNEL_ELF) $(KERNEL_BIN) doc qemu test chainboot jtagboot openocd gdb gdb-opt0 \
+ clippy clean readelf objdump nm check
all: $(KERNEL_BIN)
@@ -93,11 +109,26 @@
$(DOC_CMD) --document-private-items --open
ifeq ($(QEMU_MACHINE_TYPE),)
-qemu:
- @echo "This board is not yet supported for QEMU."
+qemu test:
+ @echo $(QEMU_MISSING_STRING)
else
qemu: $(KERNEL_BIN)
@$(DOCKER_QEMU) $(EXEC_QEMU) $(QEMU_RELEASE_ARGS) -kernel $(KERNEL_BIN)
+
+define KERNEL_TEST_RUNNER
+ #!/usr/bin/env bash
+
+ $(OBJCOPY_CMD) $$1 $$1.img
+ TEST_BINARY=$$(echo $$1.img | sed -e 's/.*target/target/g')
+ $(DOCKER_TEST) ruby tests/runner.rb $(EXEC_QEMU) $(QEMU_TEST_ARGS) -kernel $$TEST_BINARY
+endef
+
+export KERNEL_TEST_RUNNER
+test:
+ @mkdir -p target
+ @echo "$$KERNEL_TEST_RUNNER" > target/kernel_test_runner.sh
+ @chmod +x target/kernel_test_runner.sh
+ RUSTFLAGS="$(RUSTFLAGS_PEDANTIC)" $(TEST_CMD) $(TEST_ARG)
endif
chainboot: $(KERNEL_BIN)
diff -uNr 12_exceptions_part1_groundwork/src/_arch/aarch64/cpu.rs 13_integrated_testing/src/_arch/aarch64/cpu.rs
--- 12_exceptions_part1_groundwork/src/_arch/aarch64/cpu.rs
+++ 13_integrated_testing/src/_arch/aarch64/cpu.rs
@@ -95,3 +95,20 @@
asm::wfe()
}
}
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+use qemu_exit::QEMUExit;
+
+const QEMU_EXIT_HANDLE: qemu_exit::AArch64 = qemu_exit::AArch64::new();
+
+/// Make the host QEMU binary execute `exit(1)`.
+pub fn qemu_exit_failure() -> ! {
+ QEMU_EXIT_HANDLE.exit_failure()
+}
+
+/// Make the host QEMU binary execute `exit(0)`.
+pub fn qemu_exit_success() -> ! {
+ QEMU_EXIT_HANDLE.exit_success()
+}
diff -uNr 12_exceptions_part1_groundwork/src/_arch/aarch64/exception.rs 13_integrated_testing/src/_arch/aarch64/exception.rs
--- 12_exceptions_part1_groundwork/src/_arch/aarch64/exception.rs
+++ 13_integrated_testing/src/_arch/aarch64/exception.rs
@@ -5,7 +5,7 @@
//! Architectural synchronous and asynchronous exception handling.
use core::{cell::UnsafeCell, fmt};
-use cortex_a::{asm, barrier, regs::*};
+use cortex_a::{barrier, regs::*};
use register::InMemoryRegister;
// Assembly counterpart to this file.
@@ -80,16 +80,6 @@
#[no_mangle]
unsafe extern "C" fn current_elx_synchronous(e: &mut ExceptionContext) {
- let far_el1 = FAR_EL1.get();
-
- // This catches the demo case for this tutorial. If the fault address happens to be 8 GiB,
- // advance the exception link register for one instruction, so that execution can continue.
- if far_el1 == 8 * 1024 * 1024 * 1024 {
- e.elr_el1 += 4;
-
- asm::eret()
- }
-
default_exception_handler(e);
}
diff -uNr 12_exceptions_part1_groundwork/src/_arch/aarch64/memory/mmu.rs 13_integrated_testing/src/_arch/aarch64/memory/mmu.rs
--- 12_exceptions_part1_groundwork/src/_arch/aarch64/memory/mmu.rs
+++ 13_integrated_testing/src/_arch/aarch64/memory/mmu.rs
@@ -331,3 +331,40 @@
Ok(())
}
}
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use test_macros::kernel_test;
+
+ /// Check if the size of `struct TableDescriptor` is as expected.
+ #[kernel_test]
+ fn size_of_tabledescriptor_equals_64_bit() {
+ assert_eq!(
+ core::mem::size_of::<TableDescriptor>(),
+ core::mem::size_of::<u64>()
+ );
+ }
+
+ /// Check if the size of `struct PageDescriptor` is as expected.
+ #[kernel_test]
+ fn size_of_pagedescriptor_equals_64_bit() {
+ assert_eq!(
+ core::mem::size_of::<PageDescriptor>(),
+ core::mem::size_of::<u64>()
+ );
+ }
+
+ /// Check if KERNEL_TABLES is in .bss.
+ #[kernel_test]
+ fn kernel_tables_in_bss() {
+ let bss_range = bsp::memory::bss_range_inclusive();
+ let kernel_tables_addr = unsafe { &KERNEL_TABLES as *const _ as usize as *mut u64 };
+
+ assert!(bss_range.contains(&kernel_tables_addr));
+ }
+}
diff -uNr 12_exceptions_part1_groundwork/src/bsp/raspberrypi/console.rs 13_integrated_testing/src/bsp/raspberrypi/console.rs
--- 12_exceptions_part1_groundwork/src/bsp/raspberrypi/console.rs
+++ 13_integrated_testing/src/bsp/raspberrypi/console.rs
@@ -35,3 +35,13 @@
pub fn console() -> &'static impl console::interface::All {
&super::PL011_UART
}
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+
+/// Minimal code needed to bring up the console in QEMU (for testing only). This is often less steps
+/// than on real hardware due to QEMU's abstractions.
+///
+/// For the RPi, nothing needs to be done.
+pub fn qemu_bring_up_console() {}
diff -uNr 12_exceptions_part1_groundwork/src/bsp/raspberrypi/memory/mmu.rs 13_integrated_testing/src/bsp/raspberrypi/memory/mmu.rs
--- 12_exceptions_part1_groundwork/src/bsp/raspberrypi/memory/mmu.rs
+++ 13_integrated_testing/src/bsp/raspberrypi/memory/mmu.rs
@@ -71,3 +71,46 @@
pub fn virt_mem_layout() -> &'static KernelVirtualLayout<{ NUM_MEM_RANGES }> {
&LAYOUT
}
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use test_macros::kernel_test;
+
+ /// Check alignment of the kernel's virtual memory layout sections.
+ #[kernel_test]
+ fn virt_mem_layout_sections_are_64KiB_aligned() {
+ const SIXTYFOUR_KIB: usize = 65536;
+
+ for i in LAYOUT.inner().iter() {
+ let start: usize = *(i.virtual_range)().start();
+ let end: usize = *(i.virtual_range)().end() + 1;
+
+ assert_eq!(start modulo SIXTYFOUR_KIB, 0);
+ assert_eq!(end modulo SIXTYFOUR_KIB, 0);
+ assert!(end >= start);
+ }
+ }
+
+ /// Ensure the kernel's virtual memory layout is free of overlaps.
+ #[kernel_test]
+ fn virt_mem_layout_has_no_overlaps() {
+ let layout = virt_mem_layout().inner();
+
+ for (i, first) in layout.iter().enumerate() {
+ for second in layout.iter().skip(i + 1) {
+ let first_range = first.virtual_range;
+ let second_range = second.virtual_range;
+
+ assert!(!first_range().contains(second_range().start()));
+ assert!(!first_range().contains(second_range().end()));
+ assert!(!second_range().contains(first_range().start()));
+ assert!(!second_range().contains(first_range().end()));
+ }
+ }
+ }
+}
diff -uNr 12_exceptions_part1_groundwork/src/exception.rs 13_integrated_testing/src/exception.rs
--- 12_exceptions_part1_groundwork/src/exception.rs
+++ 13_integrated_testing/src/exception.rs
@@ -24,3 +24,21 @@
Hypervisor,
Unknown,
}
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use test_macros::kernel_test;
+
+ /// Libkernel unit tests must execute in kernel mode.
+ #[kernel_test]
+ fn test_runner_executes_in_kernel_mode() {
+ let (level, _) = current_privilege_level();
+
+ assert!(level == PrivilegeLevel::Kernel)
+ }
+}
diff -uNr 12_exceptions_part1_groundwork/src/lib.rs 13_integrated_testing/src/lib.rs
--- 12_exceptions_part1_groundwork/src/lib.rs
+++ 13_integrated_testing/src/lib.rs
@@ -0,0 +1,169 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2018-2020 Andre Richter <andre.o.richter@gmail.com>
+
+// Rust embedded logo for `make doc`.
+#![doc(html_logo_url = "https://git.io/JeGIp")]
+
+//! The `kernel` library.
+//!
+//! Used by `main.rs` to compose the final kernel binary.
+//!
+//! # TL;DR - Overview of important Kernel entities
+//!
+//! - [`bsp::console::console()`] - Returns a reference to the kernel's [console interface].
+//! - [`bsp::driver::driver_manager()`] - Returns a reference to the kernel's [driver interface].
+//! - [`memory::mmu::mmu()`] - Returns a reference to the kernel's [MMU interface].
+//! - [`time::time_manager()`] - Returns a reference to the kernel's [timer interface].
+//!
+//! [console interface]: ../libkernel/console/interface/index.html
+//! [driver interface]: ../libkernel/driver/interface/trait.DriverManager.html
+//! [MMU interface]: ../libkernel/memory/mmu/interface/trait.MMU.html
+//! [timer interface]: ../libkernel/time/interface/trait.TimeManager.html
+//!
+//! # Code organization and architecture
+//!
+//! The code is divided into different *modules*, each representing a typical **subsystem** of the
+//! `kernel`. Top-level module files of subsystems reside directly in the `src` folder. For example,
+//! `src/memory.rs` contains code that is concerned with all things memory management.
+//!
+//! ## Visibility of processor architecture code
+//!
+//! Some of the `kernel`'s subsystems depend on low-level code that is specific to the target
+//! processor architecture. For each supported processor architecture, there exists a subfolder in
+//! `src/_arch`, for example, `src/_arch/aarch64`.
+//!
+//! The architecture folders mirror the subsystem modules laid out in `src`. For example,
+//! architectural code that belongs to the `kernel`'s memory subsystem (`src/memory.rs`) would go
+//! into `src/_arch/aarch64/memory.rs`. The latter file is directly included and re-exported in
+//! `src/memory.rs`, so that the architectural code parts are transparent with respect to the code's
+//! module organization. That means a public function `foo()` defined in
+//! `src/_arch/aarch64/memory.rs` would be reachable as `crate::memory::foo()` only.
+//!
+//! The `_` in `_arch` denotes that this folder is not part of the standard module hierarchy.
+//! Rather, it's contents are conditionally pulled into respective files using the `#[path =
+//! "_arch/xxx/yyy.rs"]` attribute.
+//!
+//! ## BSP code
+//!
+//! `BSP` stands for Board Support Package. `BSP` code is organized under `src/bsp.rs` and contains
+//! target board specific definitions and functions. These are things such as the board's memory map
+//! or instances of drivers for devices that are featured on the respective board.
+//!
+//! Just like processor architecture code, the `BSP` code's module structure tries to mirror the
+//! `kernel`'s subsystem modules, but there is no transparent re-exporting this time. That means
+//! whatever is provided must be called starting from the `bsp` namespace, e.g.
+//! `bsp::driver::driver_manager()`.
+//!
+//! ## Kernel interfaces
+//!
+//! Both `arch` and `bsp` contain code that is conditionally compiled depending on the actual target
+//! and board for which the kernel is compiled. For example, the `interrupt controller` hardware of
+//! the `Raspberry Pi 3` and the `Raspberry Pi 4` is different, but we want the rest of the `kernel`
+//! code to play nicely with any of the two without much hassle.
+//!
+//! In order to provide a clean abstraction between `arch`, `bsp` and `generic kernel code`,
+//! `interface` traits are provided *whenever possible* and *where it makes sense*. They are defined
+//! in the respective subsystem module and help to enforce the idiom of *program to an interface,
+//! not an implementation*. For example, there will be a common IRQ handling interface which the two
+//! different interrupt controller `drivers` of both Raspberrys will implement, and only export the
+//! interface to the rest of the `kernel`.
+//!
+//! ```
+//! +-------------------+
+//! | Interface (Trait) |
+//! | |
+//! +--+-------------+--+
+//! ^ ^
+//! | |
+//! | |
+//! +----------+--+ +--+----------+
+//! | kernel code | | bsp code |
+//! | | | arch code |
+//! +-------------+ +-------------+
+//! ```
+//!
+//! # Summary
+//!
+//! For a logical `kernel` subsystem, corresponding code can be distributed over several physical
+//! locations. Here is an example for the **memory** subsystem:
+//!
+//! - `src/memory.rs` and `src/memory/**/*`
+//! - Common code that is agnostic of target processor architecture and `BSP` characteristics.
+//! - Example: A function to zero a chunk of memory.
+//! - Interfaces for the memory subsystem that are implemented by `arch` or `BSP` code.
+//! - Example: An `MMU` interface that defines `MMU` function prototypes.
+//! - `src/bsp/__board_name__/memory.rs` and `src/bsp/__board_name__/memory/**/*`
+//! - `BSP` specific code.
+//! - Example: The board's memory map (physical addresses of DRAM and MMIO devices).
+//! - `src/_arch/__arch_name__/memory.rs` and `src/_arch/__arch_name__/memory/**/*`
+//! - Processor architecture specific code.
+//! - Example: Implementation of the `MMU` interface for the `__arch_name__` processor
+//! architecture.
+//!
+//! From a namespace perspective, **memory** subsystem code lives in:
+//!
+//! - `crate::memory::*`
+//! - `crate::bsp::memory::*`
+
+#![allow(incomplete_features)]
+#![feature(const_generics)]
+#![feature(const_panic)]
+#![feature(format_args_nl)]
+#![feature(global_asm)]
+#![feature(linkage)]
+#![feature(naked_functions)]
+#![feature(panic_info_message)]
+#![feature(trait_alias)]
+#![no_std]
+// Testing
+#![cfg_attr(test, no_main)]
+#![feature(custom_test_frameworks)]
+#![reexport_test_harness_main = "test_main"]
+#![test_runner(crate::test_runner)]
+
+// `mod cpu` provides the `_start()` function, the first function to run. `_start()` then calls
+// `runtime_init()`, which jumps to `kernel_init()` (defined in `main.rs`).
+
+mod panic_wait;
+mod runtime_init;
+mod synchronization;
+
+pub mod bsp;
+pub mod console;
+pub mod cpu;
+pub mod driver;
+pub mod exception;
+pub mod memory;
+pub mod print;
+pub mod time;
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+
+/// The default runner for unit tests.
+pub fn test_runner(tests: &[&test_types::UnitTest]) {
+ println!("Running {} tests", tests.len());
+ println!("-------------------------------------------------------------------\n");
+ for (i, test) in tests.iter().enumerate() {
+ print!("{:>3}. {:.<58}", i + 1, test.name);
+
+ // Run the actual test.
+ (test.test_func)();
+
+ // Failed tests call panic!(). Execution reaches here only if the test has passed.
+ println!("[ok]")
+ }
+}
+
+/// The `kernel_init()` for unit tests. Called from `runtime_init()`.
+#[cfg(test)]
+#[no_mangle]
+unsafe fn kernel_init() -> ! {
+ bsp::console::qemu_bring_up_console();
+
+ test_main();
+
+ cpu::qemu_exit_success()
+}
diff -uNr 12_exceptions_part1_groundwork/src/main.rs 13_integrated_testing/src/main.rs
--- 12_exceptions_part1_groundwork/src/main.rs
+++ 13_integrated_testing/src/main.rs
@@ -6,129 +6,12 @@
#![doc(html_logo_url = "https://git.io/JeGIp")]
//! The `kernel` binary.
-//!
-//! # TL;DR - Overview of important Kernel entities
-//!
-//! - [`bsp::console::console()`] - Returns a reference to the kernel's [console interface].
-//! - [`bsp::driver::driver_manager()`] - Returns a reference to the kernel's [driver interface].
-//! - [`memory::mmu::mmu()`] - Returns a reference to the kernel's [MMU interface].
-//! - [`time::time_manager()`] - Returns a reference to the kernel's [timer interface].
-//!
-//! [console interface]: ../libkernel/console/interface/index.html
-//! [driver interface]: ../libkernel/driver/interface/trait.DriverManager.html
-//! [MMU interface]: ../libkernel/memory/mmu/interface/trait.MMU.html
-//! [timer interface]: ../libkernel/time/interface/trait.TimeManager.html
-//!
-//! # Code organization and architecture
-//!
-//! The code is divided into different *modules*, each representing a typical **subsystem** of the
-//! `kernel`. Top-level module files of subsystems reside directly in the `src` folder. For example,
-//! `src/memory.rs` contains code that is concerned with all things memory management.
-//!
-//! ## Visibility of processor architecture code
-//!
-//! Some of the `kernel`'s subsystems depend on low-level code that is specific to the target
-//! processor architecture. For each supported processor architecture, there exists a subfolder in
-//! `src/_arch`, for example, `src/_arch/aarch64`.
-//!
-//! The architecture folders mirror the subsystem modules laid out in `src`. For example,
-//! architectural code that belongs to the `kernel`'s memory subsystem (`src/memory.rs`) would go
-//! into `src/_arch/aarch64/memory.rs`. The latter file is directly included and re-exported in
-//! `src/memory.rs`, so that the architectural code parts are transparent with respect to the code's
-//! module organization. That means a public function `foo()` defined in
-//! `src/_arch/aarch64/memory.rs` would be reachable as `crate::memory::foo()` only.
-//!
-//! The `_` in `_arch` denotes that this folder is not part of the standard module hierarchy.
-//! Rather, it's contents are conditionally pulled into respective files using the `#[path =
-//! "_arch/xxx/yyy.rs"]` attribute.
-//!
-//! ## BSP code
-//!
-//! `BSP` stands for Board Support Package. `BSP` code is organized under `src/bsp.rs` and contains
-//! target board specific definitions and functions. These are things such as the board's memory map
-//! or instances of drivers for devices that are featured on the respective board.
-//!
-//! Just like processor architecture code, the `BSP` code's module structure tries to mirror the
-//! `kernel`'s subsystem modules, but there is no transparent re-exporting this time. That means
-//! whatever is provided must be called starting from the `bsp` namespace, e.g.
-//! `bsp::driver::driver_manager()`.
-//!
-//! ## Kernel interfaces
-//!
-//! Both `arch` and `bsp` contain code that is conditionally compiled depending on the actual target
-//! and board for which the kernel is compiled. For example, the `interrupt controller` hardware of
-//! the `Raspberry Pi 3` and the `Raspberry Pi 4` is different, but we want the rest of the `kernel`
-//! code to play nicely with any of the two without much hassle.
-//!
-//! In order to provide a clean abstraction between `arch`, `bsp` and `generic kernel code`,
-//! `interface` traits are provided *whenever possible* and *where it makes sense*. They are defined
-//! in the respective subsystem module and help to enforce the idiom of *program to an interface,
-//! not an implementation*. For example, there will be a common IRQ handling interface which the two
-//! different interrupt controller `drivers` of both Raspberrys will implement, and only export the
-//! interface to the rest of the `kernel`.
-//!
-//! ```
-//! +-------------------+
-//! | Interface (Trait) |
-//! | |
-//! +--+-------------+--+
-//! ^ ^
-//! | |
-//! | |
-//! +----------+--+ +--+----------+
-//! | kernel code | | bsp code |
-//! | | | arch code |
-//! +-------------+ +-------------+
-//! ```
-//!
-//! # Summary
-//!
-//! For a logical `kernel` subsystem, corresponding code can be distributed over several physical
-//! locations. Here is an example for the **memory** subsystem:
-//!
-//! - `src/memory.rs` and `src/memory/**/*`
-//! - Common code that is agnostic of target processor architecture and `BSP` characteristics.
-//! - Example: A function to zero a chunk of memory.
-//! - Interfaces for the memory subsystem that are implemented by `arch` or `BSP` code.
-//! - Example: An `MMU` interface that defines `MMU` function prototypes.
-//! - `src/bsp/__board_name__/memory.rs` and `src/bsp/__board_name__/memory/**/*`
-//! - `BSP` specific code.
-//! - Example: The board's memory map (physical addresses of DRAM and MMIO devices).
-//! - `src/_arch/__arch_name__/memory.rs` and `src/_arch/__arch_name__/memory/**/*`
-//! - Processor architecture specific code.
-//! - Example: Implementation of the `MMU` interface for the `__arch_name__` processor
-//! architecture.
-//!
-//! From a namespace perspective, **memory** subsystem code lives in:
-//!
-//! - `crate::memory::*`
-//! - `crate::bsp::memory::*`
-
-#![allow(incomplete_features)]
-#![feature(const_generics)]
-#![feature(const_panic)]
+
#![feature(format_args_nl)]
-#![feature(global_asm)]
-#![feature(naked_functions)]
-#![feature(panic_info_message)]
-#![feature(trait_alias)]
#![no_main]
#![no_std]
-// `mod cpu` provides the `_start()` function, the first function to run. `_start()` then calls
-// `runtime_init()`, which jumps to `kernel_init()`.
-
-mod bsp;
-mod console;
-mod cpu;
-mod driver;
-mod exception;
-mod memory;
-mod panic_wait;
-mod print;
-mod runtime_init;
-mod synchronization;
-mod time;
+use libkernel::{bsp, console, driver, exception, info, memory, time};
/// Early init code.
///
@@ -140,6 +23,7 @@
/// - Without it, any atomic operations, e.g. the yet-to-be-introduced spinlocks in the device
/// drivers (which currently employ NullLocks instead of spinlocks), will fail to work on
/// the RPi SoCs.
+#[no_mangle]
unsafe fn kernel_init() -> ! {
use driver::interface::DriverManager;
use memory::mmu::interface::MMU;
@@ -165,9 +49,7 @@
/// The main function running after the early init.
fn kernel_main() -> ! {
use console::interface::All;
- use core::time::Duration;
use driver::interface::DriverManager;
- use time::interface::TimeManager;
info!("Booting on: {}", bsp::board_name());
@@ -194,31 +76,6 @@
info!(" {}. {}", i + 1, driver.compatible());
}
- info!("Timer test, spinning for 1 second");
- time::time_manager().spin_for(Duration::from_secs(1));
-
- // Cause an exception by accessing a virtual address for which no translation was set up. This
- // code accesses the address 8 GiB, which is outside the mapped address space.
- //
- // For demo purposes, the exception handler will catch the faulting 8 GiB address and allow
- // execution to continue.
- info!("");
- info!("Trying to write to address 8 GiB...");
- let mut big_addr: u64 = 8 * 1024 * 1024 * 1024;
- unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
-
- info!("************************************************");
- info!("Whoa! We recovered from a synchronous exception!");
- info!("************************************************");
- info!("");
- info!("Let's try again");
-
- // Now use address 9 GiB. The exception handler won't forgive us this time.
- info!("Trying to write to address 9 GiB...");
- big_addr = 9 * 1024 * 1024 * 1024;
- unsafe { core::ptr::read_volatile(big_addr as *mut u64) };
-
- // Will never reach here in this tutorial.
info!("Echoing input now");
loop {
let c = bsp::console::console().read_char();
diff -uNr 12_exceptions_part1_groundwork/src/memory/mmu.rs 13_integrated_testing/src/memory/mmu.rs
--- 12_exceptions_part1_groundwork/src/memory/mmu.rs
+++ 13_integrated_testing/src/memory/mmu.rs
@@ -42,7 +42,6 @@
/// Architecture agnostic translation types.
#[allow(missing_docs)]
-#[allow(dead_code)]
#[derive(Copy, Clone)]
pub enum Translation {
Identity,
@@ -197,4 +196,9 @@
info!("{}", i);
}
}
+
+ #[cfg(test)]
+ pub fn inner(&self) -> &[TranslationDescriptor; NUM_SPECIAL_RANGES] {
+ &self.inner
+ }
}
diff -uNr 12_exceptions_part1_groundwork/src/memory.rs 13_integrated_testing/src/memory.rs
--- 12_exceptions_part1_groundwork/src/memory.rs
+++ 13_integrated_testing/src/memory.rs
@@ -34,3 +34,40 @@
}
}
}
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use test_macros::kernel_test;
+
+ /// Check `zero_volatile()`.
+ #[kernel_test]
+ fn zero_volatile_works() {
+ let mut x: [usize; 3] = [10, 11, 12];
+ let x_range = x.as_mut_ptr_range();
+ let x_range_inclusive =
+ RangeInclusive::new(x_range.start, unsafe { x_range.end.offset(-1) });
+
+ unsafe { zero_volatile(x_range_inclusive) };
+
+ assert_eq!(x, [0, 0, 0]);
+ }
+
+ /// Check `bss` section layout.
+ #[kernel_test]
+ fn bss_section_is_sane() {
+ use crate::bsp::memory::bss_range_inclusive;
+ use core::mem;
+
+ let start = *bss_range_inclusive().start() as usize;
+ let end = *bss_range_inclusive().end() as usize;
+
+ assert_eq!(start modulo mem::size_of::<usize>(), 0);
+ assert_eq!(end modulo mem::size_of::<usize>(), 0);
+ assert!(end >= start);
+ }
+}
diff -uNr 12_exceptions_part1_groundwork/src/panic_wait.rs 13_integrated_testing/src/panic_wait.rs
--- 12_exceptions_part1_groundwork/src/panic_wait.rs
+++ 13_integrated_testing/src/panic_wait.rs
@@ -17,6 +17,23 @@
unsafe { bsp::console::panic_console_out().write_fmt(args).unwrap() };
}
+/// The point of exit for the "standard" (non-testing) `libkernel`.
+///
+/// This code will be used by the release kernel binary and the `integration tests`. It is linked
+/// weakly, so that the integration tests can overload it to exit `QEMU` instead of spinning
+/// forever.
+///
+/// This is one possible approach to solve the problem that `cargo` can not know who the consumer of
+/// the library will be:
+/// - The release kernel binary that should safely park the paniced core,
+/// - or an `integration test` that is executed in QEMU, which should just exit QEMU.
+#[cfg(not(test))]
+#[linkage = "weak"]
+#[no_mangle]
+fn _panic_exit() -> ! {
+ cpu::wait_forever()
+}
+
/// Prints with a newline - only use from the panic handler.
///
/// Carbon copy from https://doc.rust-lang.org/src/std/macros.rs.html
@@ -35,5 +52,16 @@
panic_println!("\nKernel panic!");
}
- cpu::wait_forever()
+ _panic_exit()
+}
+
+//--------------------------------------------------------------------------------------------------
+// Testing
+//--------------------------------------------------------------------------------------------------
+
+/// The point of exit when the library is compiled for testing.
+#[cfg(test)]
+#[no_mangle]
+fn _panic_exit() -> ! {
+ cpu::qemu_exit_failure()
}
diff -uNr 12_exceptions_part1_groundwork/src/runtime_init.rs 13_integrated_testing/src/runtime_init.rs
--- 12_exceptions_part1_groundwork/src/runtime_init.rs
+++ 13_integrated_testing/src/runtime_init.rs
@@ -31,7 +31,10 @@
///
/// - Only a single core must be active and running this function.
pub unsafe fn runtime_init() -> ! {
- zero_bss();
+ extern "Rust" {
+ fn kernel_init() -> !;
+ }
- crate::kernel_init()
+ zero_bss();
+ kernel_init()
}
diff -uNr 12_exceptions_part1_groundwork/test-macros/Cargo.toml 13_integrated_testing/test-macros/Cargo.toml
--- 12_exceptions_part1_groundwork/test-macros/Cargo.toml
+++ 13_integrated_testing/test-macros/Cargo.toml
@@ -0,0 +1,14 @@
+[package]
+name = "test-macros"
+version = "0.1.0"
+authors = ["Andre Richter <andre.o.richter@gmail.com>"]
+edition = "2018"
+
+[lib]
+proc-macro = true
+
+[dependencies]
+proc-macro2 = "1.x"
+quote = "1.x"
+syn = { version = "1.x", features = ["full"] }
+test-types = { path = "../test-types" }
diff -uNr 12_exceptions_part1_groundwork/test-macros/src/lib.rs 13_integrated_testing/test-macros/src/lib.rs
--- 12_exceptions_part1_groundwork/test-macros/src/lib.rs
+++ 13_integrated_testing/test-macros/src/lib.rs
@@ -0,0 +1,29 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+use proc_macro::TokenStream;
+use proc_macro2::Span;
+use quote::quote;
+use syn::{parse_macro_input, Ident, ItemFn};
+
+#[proc_macro_attribute]
+pub fn kernel_test(_attr: TokenStream, input: TokenStream) -> TokenStream {
+ let f = parse_macro_input!(input as ItemFn);
+
+ let test_name = &format!("{}", f.sig.ident.to_string());
+ let test_ident = Ident::new(
+ &format!("{}_TEST_CONTAINER", f.sig.ident.to_string().to_uppercase()),
+ Span::call_site(),
+ );
+ let test_code_block = f.block;
+
+ quote!(
+ #[test_case]
+ const #test_ident: test_types::UnitTest = test_types::UnitTest {
+ name: #test_name,
+ test_func: || #test_code_block,
+ };
+ )
+ .into()
+}
diff -uNr 12_exceptions_part1_groundwork/tests/00_console_sanity.rb 13_integrated_testing/tests/00_console_sanity.rb
--- 12_exceptions_part1_groundwork/tests/00_console_sanity.rb
+++ 13_integrated_testing/tests/00_console_sanity.rb
@@ -0,0 +1,50 @@
+# frozen_string_literal: true
+
+# SPDX-License-Identifier: MIT OR Apache-2.0
+#
+# Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+require 'expect'
+
+TIMEOUT_SECS = 3
+
+# Verify sending and receiving works as expected.
+class TxRxHandshake
+ def name
+ 'Transmit and Receive handshake'
+ end
+
+ def run(qemu_out, qemu_in)
+ qemu_in.write_nonblock('ABC')
+ raise('TX/RX test failed') if qemu_out.expect('OK1234', TIMEOUT_SECS).nil?
+ end
+end
+
+# Check for correct TX statistics implementation. Depends on test 1 being run first.
+class TxStatistics
+ def name
+ 'Transmit statistics'
+ end
+
+ def run(qemu_out, _qemu_in)
+ raise('chars_written reported wrong') if qemu_out.expect('6', TIMEOUT_SECS).nil?
+ end
+end
+
+# Check for correct RX statistics implementation. Depends on test 1 being run first.
+class RxStatistics
+ def name
+ 'Receive statistics'
+ end
+
+ def run(qemu_out, _qemu_in)
+ raise('chars_read reported wrong') if qemu_out.expect('3', TIMEOUT_SECS).nil?
+ end
+end
+
+##--------------------------------------------------------------------------------------------------
+## Test registration
+##--------------------------------------------------------------------------------------------------
+def subtest_collection
+ [TxRxHandshake.new, TxStatistics.new, RxStatistics.new]
+end
diff -uNr 12_exceptions_part1_groundwork/tests/00_console_sanity.rs 13_integrated_testing/tests/00_console_sanity.rs
--- 12_exceptions_part1_groundwork/tests/00_console_sanity.rs
+++ 13_integrated_testing/tests/00_console_sanity.rs
@@ -0,0 +1,36 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+//! Console sanity tests - RX, TX and statistics.
+
+#![feature(format_args_nl)]
+#![no_main]
+#![no_std]
+
+mod panic_exit_failure;
+
+use libkernel::{bsp, console, print};
+
+#[no_mangle]
+unsafe fn kernel_init() -> ! {
+ use bsp::console::{console, qemu_bring_up_console};
+ use console::interface::*;
+
+ qemu_bring_up_console();
+
+ // Handshake
+ assert_eq!(console().read_char(), 'A');
+ assert_eq!(console().read_char(), 'B');
+ assert_eq!(console().read_char(), 'C');
+ print!("OK1234");
+
+ // 6
+ print!("{}", console().chars_written());
+
+ // 3
+ print!("{}", console().chars_read());
+
+ // The QEMU process running this test will be closed by the I/O test harness.
+ loop {}
+}
diff -uNr 12_exceptions_part1_groundwork/tests/01_timer_sanity.rs 13_integrated_testing/tests/01_timer_sanity.rs
--- 12_exceptions_part1_groundwork/tests/01_timer_sanity.rs
+++ 13_integrated_testing/tests/01_timer_sanity.rs
@@ -0,0 +1,50 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+//! Timer sanity tests.
+
+#![feature(custom_test_frameworks)]
+#![no_main]
+#![no_std]
+#![reexport_test_harness_main = "test_main"]
+#![test_runner(libkernel::test_runner)]
+
+mod panic_exit_failure;
+
+use core::time::Duration;
+use libkernel::{bsp, cpu, time, time::interface::TimeManager};
+use test_macros::kernel_test;
+
+#[no_mangle]
+unsafe fn kernel_init() -> ! {
+ bsp::console::qemu_bring_up_console();
+
+ // Depending on CPU arch, some timer bring-up code could go here. Not needed for the RPi.
+
+ test_main();
+
+ cpu::qemu_exit_success()
+}
+
+/// Simple check that the timer is running.
+#[kernel_test]
+fn timer_is_counting() {
+ assert!(time::time_manager().uptime().as_nanos() > 0)
+}
+
+/// Timer resolution must be sufficient.
+#[kernel_test]
+fn timer_resolution_is_sufficient() {
+ assert!(time::time_manager().resolution().as_nanos() < 100)
+}
+
+/// Sanity check spin_for() implementation.
+#[kernel_test]
+fn spin_accuracy_check_1_second() {
+ let t1 = time::time_manager().uptime();
+ time::time_manager().spin_for(Duration::from_secs(1));
+ let t2 = time::time_manager().uptime();
+
+ assert_eq!((t2 - t1).as_secs(), 1)
+}
diff -uNr 12_exceptions_part1_groundwork/tests/02_exception_sync_page_fault.rs 13_integrated_testing/tests/02_exception_sync_page_fault.rs
--- 12_exceptions_part1_groundwork/tests/02_exception_sync_page_fault.rs
+++ 13_integrated_testing/tests/02_exception_sync_page_fault.rs
@@ -0,0 +1,44 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+//! Page faults must result in synchronous exceptions.
+
+#![feature(format_args_nl)]
+#![no_main]
+#![no_std]
+
+/// Overwrites libkernel's `panic_wait::_panic_exit()` with the QEMU-exit version.
+///
+/// Reaching this code is a success, because it is called from the synchronous exception handler,
+/// which is what this test wants to achieve.
+///
+/// It also means that this integration test can not use any other code that calls panic!() directly
+/// or indirectly.
+mod panic_exit_success;
+
+use libkernel::{bsp, cpu, exception, memory, println};
+
+#[no_mangle]
+unsafe fn kernel_init() -> ! {
+ use memory::mmu::interface::MMU;
+
+ bsp::console::qemu_bring_up_console();
+
+ println!("Testing synchronous exception handling by causing a page fault");
+ println!("-------------------------------------------------------------------\n");
+
+ exception::handling_init();
+
+ if let Err(string) = memory::mmu::mmu().init() {
+ println!("MMU: {}", string);
+ cpu::qemu_exit_failure()
+ }
+
+ println!("Writing beyond mapped area to address 9 GiB...");
+ let big_addr: u64 = 9 * 1024 * 1024 * 1024;
+ core::ptr::read_volatile(big_addr as *mut u64);
+
+ // If execution reaches here, the memory access above did not cause a page fault exception.
+ cpu::qemu_exit_failure()
+}
diff -uNr 12_exceptions_part1_groundwork/tests/panic_exit_failure/mod.rs 13_integrated_testing/tests/panic_exit_failure/mod.rs
--- 12_exceptions_part1_groundwork/tests/panic_exit_failure/mod.rs
+++ 13_integrated_testing/tests/panic_exit_failure/mod.rs
@@ -0,0 +1,9 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+/// Overwrites libkernel's `panic_wait::_panic_exit()` with the QEMU-exit version.
+#[no_mangle]
+fn _panic_exit() -> ! {
+ libkernel::cpu::qemu_exit_failure()
+}
diff -uNr 12_exceptions_part1_groundwork/tests/panic_exit_success/mod.rs 13_integrated_testing/tests/panic_exit_success/mod.rs
--- 12_exceptions_part1_groundwork/tests/panic_exit_success/mod.rs
+++ 13_integrated_testing/tests/panic_exit_success/mod.rs
@@ -0,0 +1,9 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+/// Overwrites libkernel's `panic_wait::_panic_exit()` with the QEMU-exit version.
+#[no_mangle]
+fn _panic_exit() -> ! {
+ libkernel::cpu::qemu_exit_success()
+}
diff -uNr 12_exceptions_part1_groundwork/tests/runner.rb 13_integrated_testing/tests/runner.rb
--- 12_exceptions_part1_groundwork/tests/runner.rb
+++ 13_integrated_testing/tests/runner.rb
@@ -0,0 +1,143 @@
+#!/usr/bin/env ruby
+# frozen_string_literal: true
+
+# SPDX-License-Identifier: MIT OR Apache-2.0
+#
+# Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+require 'English'
+require 'pty'
+
+# Test base class.
+class Test
+ INDENT = ' '
+
+ def print_border(status)
+ puts
+ puts "#{INDENT}-------------------------------------------------------------------"
+ puts status
+ puts "#{INDENT}-------------------------------------------------------------------\n\n\n"
+ end
+
+ def print_error(error)
+ puts
+ print_border("#{INDENT}❌ Failure: #{error}: #{@test_name}")
+ end
+
+ def print_success
+ print_border("#{INDENT}✅ Success: #{@test_name}")
+ end
+
+ def print_output
+ puts "#{INDENT}-------------------------------------------------------------------"
+ print INDENT
+ print '🦀 '
+ print @output.join('').gsub("\n", "\n#{INDENT}")
+ end
+
+ def finish(error)
+ print_output
+
+ exit_code = if error
+ print_error(error)
+ false
+ else
+ print_success
+ true
+ end
+
+ exit(exit_code)
+ end
+end
+
+# Executes tests with console I/O.
+class ConsoleTest < Test
+ def initialize(binary, qemu_cmd, test_name, console_subtests)
+ super()
+
+ @binary = binary
+ @qemu_cmd = qemu_cmd
+ @test_name = test_name
+ @console_subtests = console_subtests
+ @cur_subtest = 1
+ @output = ["Running #{@console_subtests.length} console-based tests\n",
+ "-------------------------------------------------------------------\n\n"]
+ end
+
+ def format_test_name(number, name)
+ formatted_name = "#{number.to_s.rjust(3)}. #{name}"
+ formatted_name.ljust(63, '.')
+ end
+
+ def run_subtest(subtest, qemu_out, qemu_in)
+ @output << format_test_name(@cur_subtest, subtest.name)
+
+ subtest.run(qemu_out, qemu_in)
+
+ @output << "[ok]\n"
+ @cur_subtest += 1
+ end
+
+ def exec
+ error = false
+
+ PTY.spawn(@qemu_cmd) do |qemu_out, qemu_in|
+ begin
+ @console_subtests.each { |t| run_subtest(t, qemu_out, qemu_in) }
+ rescue StandardError => e
+ error = e.message
+ end
+
+ finish(error)
+ end
+ end
+end
+
+# A wrapper around the bare QEMU invocation.
+class RawTest < Test
+ MAX_WAIT_SECS = 5
+
+ def initialize(binary, qemu_cmd, test_name)
+ super()
+
+ @binary = binary
+ @qemu_cmd = qemu_cmd
+ @test_name = test_name
+ @output = []
+ end
+
+ def exec
+ error = 'Timed out waiting for test'
+ io = IO.popen(@qemu_cmd)
+
+ while IO.select([io], nil, nil, MAX_WAIT_SECS)
+ begin
+ @output << io.read_nonblock(1024)
+ rescue EOFError
+ io.close
+ error = $CHILD_STATUS.to_i != 0
+ break
+ end
+ end
+
+ finish(error)
+ end
+end
+
+##--------------------------------------------------------------------------------------------------
+## Script entry point
+##--------------------------------------------------------------------------------------------------
+binary = ARGV.last
+test_name = binary.gsub(modulor{.*deps/}, '').split('-')[0]
+console_test_file = "tests/#{test_name}.rb"
+qemu_cmd = ARGV.join(' ')
+
+test_runner = if File.exist?(console_test_file)
+ load console_test_file
+ # subtest_collection is provided by console_test_file
+ ConsoleTest.new(binary, qemu_cmd, test_name, subtest_collection)
+ else
+ RawTest.new(binary, qemu_cmd, test_name)
+ end
+
+test_runner.exec
diff -uNr 12_exceptions_part1_groundwork/test-types/Cargo.toml 13_integrated_testing/test-types/Cargo.toml
--- 12_exceptions_part1_groundwork/test-types/Cargo.toml
+++ 13_integrated_testing/test-types/Cargo.toml
@@ -0,0 +1,5 @@
+[package]
+name = "test-types"
+version = "0.1.0"
+authors = ["Andre Richter <andre.o.richter@gmail.com>"]
+edition = "2018"
diff -uNr 12_exceptions_part1_groundwork/test-types/src/lib.rs 13_integrated_testing/test-types/src/lib.rs
--- 12_exceptions_part1_groundwork/test-types/src/lib.rs
+++ 13_integrated_testing/test-types/src/lib.rs
@@ -0,0 +1,16 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2019-2020 Andre Richter <andre.o.richter@gmail.com>
+
+//! Types for the `custom_test_frameworks` implementation.
+
+#![no_std]
+
+/// Unit test container.
+pub struct UnitTest {
+ /// Name of the test.
+ pub name: &'static str,
+
+ /// Function pointer to the test.
+ pub test_func: fn(),
+}