rust-raspberrypi-OS-tutorials/09_privilege_level/README.md
Andre Richter f6190f85b7
ASM: Remove use of .equ
The LLVM assembler apparently causes the .equ directive to create symbols
instead of just a local and temporary variable.

Work around this by using const operands with global_asm!.
2022-05-03 23:53:45 +02:00

19 KiB
Raw Blame History

Tutorial 09 - Privilege Level

tl;dr

  • In early boot code, we transition from the Hypervisor privilege level (EL2 in AArch64) to the Kernel (EL1) privilege level.

Table of Contents

Introduction

Application-grade CPUs have so-called privilege levels, which have different purposes:

Typically used for AArch64 RISC-V x86
Userspace applications EL0 U/VU Ring 3
OS Kernel EL1 S/VS Ring 0
Hypervisor EL2 HS Ring -1
Low-Level Firmware EL3 M

EL in AArch64 stands for Exception Level. If you want more information regarding the other architectures, please have a look at the following links:

At this point, I strongly recommend that you glimpse over Chapter 3 of the [Programmers Guide for ARMv8-A] before you continue. It gives a concise overview about the topic.

Scope of this tutorial

By default, the Raspberry will always start executing in EL2. Since we are writing a traditional Kernel, we have to transition into the more appropriate EL1.

Checking for EL2 in the entrypoint

First of all, we need to ensure that we actually execute in EL2 before we can call respective code to transition to EL1. Therefore, we add a new checkt to the top of boot.s, which parks the CPU core should it not be in EL2.

// Only proceed if the core executes in EL2. Park it otherwise.
mrs	x0, CurrentEL
cmp	x0, {CONST_CURRENTEL_EL2}
b.ne	.L_parking_loop

Afterwards, we continue with preparing the EL2 -> EL1 transition by calling prepare_el2_to_el1_transition() in boot.rs:

#[no_mangle]
pub unsafe extern "C" fn _start_rust(phys_boot_core_stack_end_exclusive_addr: u64) -> ! {
    prepare_el2_to_el1_transition(phys_boot_core_stack_end_exclusive_addr);

    // Use `eret` to "return" to EL1. This results in execution of kernel_init() in EL1.
    asm::eret()
}

Transition preparation

Since EL2 is more privileged than EL1, it has control over various processor features and can allow or disallow EL1 code to use them. One such example is access to timer and counter registers. We are already using them since tutorial 07, so of course we want to keep them. Therefore we set the respective flags in the Counter-timer Hypervisor Control register and additionally set the virtual offset to zero so that we get the real physical value everytime:

// Enable timer counter registers for EL1.
CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);

// No offset for reading the counters.
CNTVOFF_EL2.set(0);

Next, we configure the Hypervisor Configuration Register such that EL1 runs in AArch64 mode, and not in AArch32, which would also be possible.

// Set EL1 execution state to AArch64.
HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);

Returning from an exception that never happened

There is actually only one way to transition from a higher EL to a lower EL, which is by way of executing the ERET instruction.

This instruction will copy the contents of the Saved Program Status Register - EL2 to Current Program Status Register - EL1 and jump to the instruction address that is stored in the Exception Link Register - EL2.

This is basically the reverse of what is happening when an exception is taken. You'll learn about that in an upcoming tutorial.

// Set up a simulated exception return.
//
// First, fake a saved program status where all interrupts were masked and SP_EL1 was used as a
// stack pointer.
SPSR_EL2.write(
    SPSR_EL2::D::Masked
        + SPSR_EL2::A::Masked
        + SPSR_EL2::I::Masked
        + SPSR_EL2::F::Masked
        + SPSR_EL2::M::EL1h,
);

// Second, let the link register point to kernel_init().
ELR_EL2.set(crate::kernel_init as *const () as u64);

// Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it. Since there
// are no plans to ever return to EL2, just re-use the same stack.
SP_EL1.set(phys_boot_core_stack_end_exclusive_addr);

As you can see, we are populating ELR_EL2 with the address of the kernel_init() function that we earlier used to call directly from the entrypoint. Finally, we set the stack pointer for SP_EL1.

You might have noticed that the stack's address was supplied as a function argument. As you might remember, in _start() in boot.s, we are already setting up the stack for EL2. Since there are no plans to ever return to EL2, we can just re-use the same stack for EL1, so its address is forwarded using function arguments.

Lastly, back in _start_rust() a call to ERET is made:

#[no_mangle]
pub unsafe extern "C" fn _start_rust(phys_boot_core_stack_end_exclusive_addr: u64) -> ! {
    prepare_el2_to_el1_transition(phys_boot_core_stack_end_exclusive_addr);

    // Use `eret` to "return" to EL1. This results in execution of kernel_init() in EL1.
    asm::eret()
}

Test it

In main.rs, we print the current privilege level and additionally inspect if the mask bits in SPSR_EL2 made it to EL1 as well:

$ make chainboot
[...]
Minipush 1.0

[MP] ⏳ Waiting for /dev/ttyUSB0
[MP] ✅ Serial connected
[MP] 🔌 Please power the target now
 __  __ _      _ _                 _
|  \/  (_)_ _ (_) |   ___  __ _ __| |
| |\/| | | ' \| | |__/ _ \/ _` / _` |
|_|  |_|_|_||_|_|____\___/\__,_\__,_|

           Raspberry Pi 3

[ML] Requesting binary
[MP] ⏩ Pushing 14 KiB =========================================🦀 100% 0 KiB/s Time: 00:00:00
[ML] Loaded! Executing the payload now

[    0.165757] mingo version 0.9.0
[    0.165957] Booting on: Raspberry Pi 3
[    0.166412] Current privilege level: EL1
[    0.166888] Exception handling state:
[    0.167333]       Debug:  Masked
[    0.167723]       SError: Masked
[    0.168112]       IRQ:    Masked
[    0.168502]       FIQ:    Masked
[    0.168893] Architectural timer resolution: 52 ns
[    0.169467] Drivers loaded:
[    0.169803]       1. BCM GPIO
[    0.170160]       2. BCM PL011 UART
[    0.170583] Timer test, spinning for 1 second
[    1.171115] Echoing input now

Diff to previous


diff -uNr 08_hw_debug_JTAG/Cargo.toml 09_privilege_level/Cargo.toml
--- 08_hw_debug_JTAG/Cargo.toml
+++ 09_privilege_level/Cargo.toml
@@ -1,6 +1,6 @@
 [package]
 name = "mingo"
-version = "0.8.0"
+version = "0.9.0"
 authors = ["Andre Richter <andre.o.richter@gmail.com>"]
 edition = "2021"


diff -uNr 08_hw_debug_JTAG/src/_arch/aarch64/cpu/boot.rs 09_privilege_level/src/_arch/aarch64/cpu/boot.rs
--- 08_hw_debug_JTAG/src/_arch/aarch64/cpu/boot.rs
+++ 09_privilege_level/src/_arch/aarch64/cpu/boot.rs
@@ -12,21 +12,72 @@
 //! crate::cpu::boot::arch_boot

 use core::arch::global_asm;
+use cortex_a::{asm, registers::*};
+use tock_registers::interfaces::Writeable;

 // Assembly counterpart to this file.
 global_asm!(
     include_str!("boot.s"),
+    CONST_CURRENTEL_EL2 = const 0x8,
     CONST_CORE_ID_MASK = const 0b11
 );

 //--------------------------------------------------------------------------------------------------
+// Private Code
+//--------------------------------------------------------------------------------------------------
+
+/// Prepares the transition from EL2 to EL1.
+///
+/// # Safety
+///
+/// - The `bss` section is not initialized yet. The code must not use or reference it in any way.
+/// - The HW state of EL1 must be prepared in a sound way.
+#[inline(always)]
+unsafe fn prepare_el2_to_el1_transition(phys_boot_core_stack_end_exclusive_addr: u64) {
+    // Enable timer counter registers for EL1.
+    CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
+
+    // No offset for reading the counters.
+    CNTVOFF_EL2.set(0);
+
+    // Set EL1 execution state to AArch64.
+    HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64);
+
+    // Set up a simulated exception return.
+    //
+    // First, fake a saved program status where all interrupts were masked and SP_EL1 was used as a
+    // stack pointer.
+    SPSR_EL2.write(
+        SPSR_EL2::D::Masked
+            + SPSR_EL2::A::Masked
+            + SPSR_EL2::I::Masked
+            + SPSR_EL2::F::Masked
+            + SPSR_EL2::M::EL1h,
+    );
+
+    // Second, let the link register point to kernel_init().
+    ELR_EL2.set(crate::kernel_init as *const () as u64);
+
+    // Set up SP_EL1 (stack pointer), which will be used by EL1 once we "return" to it. Since there
+    // are no plans to ever return to EL2, just re-use the same stack.
+    SP_EL1.set(phys_boot_core_stack_end_exclusive_addr);
+}
+
+//--------------------------------------------------------------------------------------------------
 // Public Code
 //--------------------------------------------------------------------------------------------------

 /// The Rust entry of the `kernel` binary.
 ///
 /// The function is called from the assembly `_start` function.
+///
+/// # Safety
+///
+/// - Exception return from EL2 must must continue execution in EL1 with `kernel_init()`.
 #[no_mangle]
-pub unsafe fn _start_rust() -> ! {
-    crate::kernel_init()
+pub unsafe extern "C" fn _start_rust(phys_boot_core_stack_end_exclusive_addr: u64) -> ! {
+    prepare_el2_to_el1_transition(phys_boot_core_stack_end_exclusive_addr);
+
+    // Use `eret` to "return" to EL1. This results in execution of kernel_init() in EL1.
+    asm::eret()
 }

diff -uNr 08_hw_debug_JTAG/src/_arch/aarch64/cpu/boot.s 09_privilege_level/src/_arch/aarch64/cpu/boot.s
--- 08_hw_debug_JTAG/src/_arch/aarch64/cpu/boot.s
+++ 09_privilege_level/src/_arch/aarch64/cpu/boot.s
@@ -27,6 +27,11 @@
 // fn _start()
 //------------------------------------------------------------------------------
 _start:
+	// Only proceed if the core executes in EL2. Park it otherwise.
+	mrs	x0, CurrentEL
+	cmp	x0, {CONST_CURRENTEL_EL2}
+	b.ne	.L_parking_loop
+
 	// Only proceed on the boot core. Park it otherwise.
 	mrs	x1, MPIDR_EL1
 	and	x1, x1, {CONST_CORE_ID_MASK}
@@ -48,11 +53,11 @@

 	// Prepare the jump to Rust code.
 .L_prepare_rust:
-	// Set the stack pointer.
+	// Set the stack pointer. This ensures that any code in EL2 that needs the stack will work.
 	ADR_REL	x0, __boot_core_stack_end_exclusive
 	mov	sp, x0

-	// Jump to Rust code.
+	// Jump to Rust code. x0 holds the function argument provided to _start_rust().
 	b	_start_rust

 	// Infinitely wait for events (aka "park the core").

diff -uNr 08_hw_debug_JTAG/src/_arch/aarch64/exception/asynchronous.rs 09_privilege_level/src/_arch/aarch64/exception/asynchronous.rs
--- 08_hw_debug_JTAG/src/_arch/aarch64/exception/asynchronous.rs
+++ 09_privilege_level/src/_arch/aarch64/exception/asynchronous.rs
@@ -0,0 +1,82 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2018-2022 Andre Richter <andre.o.richter@gmail.com>
+
+//! Architectural asynchronous exception handling.
+//!
+//! # Orientation
+//!
+//! Since arch modules are imported into generic modules using the path attribute, the path of this
+//! file is:
+//!
+//! crate::exception::asynchronous::arch_asynchronous
+
+use cortex_a::registers::*;
+use tock_registers::interfaces::Readable;
+
+//--------------------------------------------------------------------------------------------------
+// Private Definitions
+//--------------------------------------------------------------------------------------------------
+
+trait DaifField {
+    fn daif_field() -> tock_registers::fields::Field<u64, DAIF::Register>;
+}
+
+struct Debug;
+struct SError;
+struct IRQ;
+struct FIQ;
+
+//--------------------------------------------------------------------------------------------------
+// Private Code
+//--------------------------------------------------------------------------------------------------
+
+impl DaifField for Debug {
+    fn daif_field() -> tock_registers::fields::Field<u64, DAIF::Register> {
+        DAIF::D
+    }
+}
+
+impl DaifField for SError {
+    fn daif_field() -> tock_registers::fields::Field<u64, DAIF::Register> {
+        DAIF::A
+    }
+}
+
+impl DaifField for IRQ {
+    fn daif_field() -> tock_registers::fields::Field<u64, DAIF::Register> {
+        DAIF::I
+    }
+}
+
+impl DaifField for FIQ {
+    fn daif_field() -> tock_registers::fields::Field<u64, DAIF::Register> {
+        DAIF::F
+    }
+}
+
+fn is_masked<T>() -> bool
+where
+    T: DaifField,
+{
+    DAIF.is_set(T::daif_field())
+}
+
+//--------------------------------------------------------------------------------------------------
+// Public Code
+//--------------------------------------------------------------------------------------------------
+
+/// Print the AArch64 exceptions status.
+#[rustfmt::skip]
+pub fn print_state() {
+    use crate::info;
+
+    let to_mask_str = |x| -> _ {
+        if x { "Masked" } else { "Unmasked" }
+    };
+
+    info!("      Debug:  {}", to_mask_str(is_masked::<Debug>()));
+    info!("      SError: {}", to_mask_str(is_masked::<SError>()));
+    info!("      IRQ:    {}", to_mask_str(is_masked::<IRQ>()));
+    info!("      FIQ:    {}", to_mask_str(is_masked::<FIQ>()));
+}

diff -uNr 08_hw_debug_JTAG/src/_arch/aarch64/exception.rs 09_privilege_level/src/_arch/aarch64/exception.rs
--- 08_hw_debug_JTAG/src/_arch/aarch64/exception.rs
+++ 09_privilege_level/src/_arch/aarch64/exception.rs
@@ -0,0 +1,31 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2018-2022 Andre Richter <andre.o.richter@gmail.com>
+
+//! Architectural synchronous and asynchronous exception handling.
+//!
+//! # Orientation
+//!
+//! Since arch modules are imported into generic modules using the path attribute, the path of this
+//! file is:
+//!
+//! crate::exception::arch_exception
+
+use cortex_a::registers::*;
+use tock_registers::interfaces::Readable;
+
+//--------------------------------------------------------------------------------------------------
+// Public Code
+//--------------------------------------------------------------------------------------------------
+use crate::exception::PrivilegeLevel;
+
+/// The processing element's current privilege level.
+pub fn current_privilege_level() -> (PrivilegeLevel, &'static str) {
+    let el = CurrentEL.read_as_enum(CurrentEL::EL);
+    match el {
+        Some(CurrentEL::EL::Value::EL2) => (PrivilegeLevel::Hypervisor, "EL2"),
+        Some(CurrentEL::EL::Value::EL1) => (PrivilegeLevel::Kernel, "EL1"),
+        Some(CurrentEL::EL::Value::EL0) => (PrivilegeLevel::User, "EL0"),
+        _ => (PrivilegeLevel::Unknown, "Unknown"),
+    }
+}

diff -uNr 08_hw_debug_JTAG/src/exception/asynchronous.rs 09_privilege_level/src/exception/asynchronous.rs
--- 08_hw_debug_JTAG/src/exception/asynchronous.rs
+++ 09_privilege_level/src/exception/asynchronous.rs
@@ -0,0 +1,14 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2020-2022 Andre Richter <andre.o.richter@gmail.com>
+
+//! Asynchronous exception handling.
+
+#[cfg(target_arch = "aarch64")]
+#[path = "../_arch/aarch64/exception/asynchronous.rs"]
+mod arch_asynchronous;
+
+//--------------------------------------------------------------------------------------------------
+// Architectural Public Reexports
+//--------------------------------------------------------------------------------------------------
+pub use arch_asynchronous::print_state;

diff -uNr 08_hw_debug_JTAG/src/exception.rs 09_privilege_level/src/exception.rs
--- 08_hw_debug_JTAG/src/exception.rs
+++ 09_privilege_level/src/exception.rs
@@ -0,0 +1,30 @@
+// SPDX-License-Identifier: MIT OR Apache-2.0
+//
+// Copyright (c) 2020-2022 Andre Richter <andre.o.richter@gmail.com>
+
+//! Synchronous and asynchronous exception handling.
+
+#[cfg(target_arch = "aarch64")]
+#[path = "_arch/aarch64/exception.rs"]
+mod arch_exception;
+
+pub mod asynchronous;
+
+//--------------------------------------------------------------------------------------------------
+// Architectural Public Reexports
+//--------------------------------------------------------------------------------------------------
+pub use arch_exception::current_privilege_level;
+
+//--------------------------------------------------------------------------------------------------
+// Public Definitions
+//--------------------------------------------------------------------------------------------------
+
+/// Kernel privilege levels.
+#[allow(missing_docs)]
+#[derive(PartialEq)]
+pub enum PrivilegeLevel {
+    User,
+    Kernel,
+    Hypervisor,
+    Unknown,
+}

diff -uNr 08_hw_debug_JTAG/src/main.rs 09_privilege_level/src/main.rs
--- 08_hw_debug_JTAG/src/main.rs
+++ 09_privilege_level/src/main.rs
@@ -118,6 +118,7 @@
 mod console;
 mod cpu;
 mod driver;
+mod exception;
 mod panic_wait;
 mod print;
 mod synchronization;
@@ -146,6 +147,8 @@

 /// The main function running after the early init.
 fn kernel_main() -> ! {
+    use bsp::console::console;
+    use console::interface::All;
     use core::time::Duration;
     use driver::interface::DriverManager;
     use time::interface::TimeManager;
@@ -157,6 +160,12 @@
     );
     info!("Booting on: {}", bsp::board_name());

+    let (_, privilege_level) = exception::current_privilege_level();
+    info!("Current privilege level: {}", privilege_level);
+
+    info!("Exception handling state:");
+    exception::asynchronous::print_state();
+
     info!(
         "Architectural timer resolution: {} ns",
         time::time_manager().resolution().as_nanos()
@@ -171,11 +180,15 @@
         info!("      {}. {}", i + 1, driver.compatible());
     }

-    // Test a failing timer case.
-    time::time_manager().spin_for(Duration::from_nanos(1));
+    info!("Timer test, spinning for 1 second");
+    time::time_manager().spin_for(Duration::from_secs(1));
+
+    info!("Echoing input now");

+    // Discard any spurious received characters before going into echo mode.
+    console().clear_rx();
     loop {
-        info!("Spinning for 1 second");
-        time::time_manager().spin_for(Duration::from_secs(1));
+        let c = bsp::console::console().read_char();
+        bsp::console::console().write_char(c);
     }
 }

diff -uNr 08_hw_debug_JTAG/tests/boot_test_string.rb 09_privilege_level/tests/boot_test_string.rb
--- 08_hw_debug_JTAG/tests/boot_test_string.rb
+++ 09_privilege_level/tests/boot_test_string.rb
@@ -1,3 +1,3 @@
 # frozen_string_literal: true

-EXPECTED_PRINT = 'Spinning for 1 second'
+EXPECTED_PRINT = 'Echoing input now'