Summary:
```python
parser.add_argument('--attn_cache_size', type=str, default=None,
help='The size of GPU memory allocated for storing past attention keys/values between inference steps. '
'Examples: 500MB, 1.2GB, 1073741824 (bytes). Note that 1KB != 1KiB here. '
'Default: 0.5GiB * num_blocks * hidden_size / 14336. '
'The latter is the hidden size of the bigscience/bloom-petals model.')
parser.add_argument('--request_timeout', type=float, required=False, default=3 * 60,
help='Timeout (in seconds) for the whole rpc_forward/rpc_backward/rpc_forward_stream/rpc_backward_stream request')
parser.add_argument('--session_timeout', type=float, required=False, default=30 * 60,
help='Timeout (in seconds) for the whole inference session')
parser.add_argument('--step_timeout', type=float, required=False, default=60,
help="Timeout (in seconds) for waiting the next step's inputs inside an inference session")
parser.add_argument('--load_in_8bit', type=bool, default=None,
help="Convert the loaded model into mixed-8bit quantized model. Default: True if GPU is available")
```
Co-authored-by: justheuristic <justheuristic@gmail.com>
- Linear8bitLt now supports for pre-turing GPUs by temporarily upcasting quantized weights.
- added a test for linear8bitlt accuracy with the new fallback, the accuracy is similar than the real thing, (slightly better due to non-quantized A)
- performance is roughly halfway between the default mode and memory_efficient_backward
Alternatives considered:
- cupy - slow, casting to float internally
- triton - fast but unstable af. every 3rd attempt to matmul is a segfault
- bnb.functional.igemm (no lt) - "CuBLAS Error 8" on old GPUs
Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
A patch to bitsandbytes 0.34.0 that introduces an option to run backward pass in default (fast) matrix layout.
Authors: cxb inversion by @borzunov, original 8bit code by @timdettmers
* optimized layout inversion code by @borzunov ([original code](https://colab.research.google.com/drive/1EJ0MKifajXSSVq7O2_QGwtb0l6gRAGrh?usp=sharing)) to use less forward calls
* implemented CustomLinear8bitLt, a child of Linear8bitLt that can do backward without CB
* added exact match tests for layouts and linear layers: see tests/test_linear8bitlt.py
* switched petals to the new layer type
Core idea: layouts apply the same permutation to every tile in the matrix. We can treat this as (batched) gather ops.
Reshape input tensor so that ij-th gather operation op will apply to ij-th elements in each tile.
Prototype:
Layout info: https://github.com/TimDettmers/bitsandbytes/blob/main/csrc/kernels.cu#L2130-L2136
Co-authored-by: Alexander Borzunov <hxrussia@gmail.com>
Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
Co-authored-by: Tim Dettmers <tim.dettmers@gmail.com>
- [x] made RemoteSequenceManager into a background thread that pre-fetches information instead of running just in time
- [x] moved routing-related stuff to petals.client.routing
- [x] extract remote peer routing information to RemoteSequenceInfo
- [x] made sure that the code survives continued use (e.g. one hour)
- [x] updated every spot where update_ is called manually
- [x] modified get_sequence to check that the thread is alive, warn if not
- [x] removed max_retries, switched rpc_info to exponential backoff
- [x] fixed a bg that causes RemoteSeq* to lose user-defined hyperparameters (e.g. timeout) upon subsequencing (sequential[3:5])
- [x] moved client-side points strategy to client.routing
- [x] ensured that RemoteSequenceManager thread created in get_remote_module properly shuts down when the module is destroyed
- [x] resolved minor affected todos
- [x] modified tests to no longer use PYTHONPATH
- [x] worked around protocol error in rpc_info
Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
Co-authored-by: Artem Chumachenko <artek.chumak@gmail.com>
This commit adds a Dockerfile that sets up the environment for Petals, as well as a GitHub Action to build the corresponding image on each push to the main branch.
Fixes:
- An exception while creating a model with `ptune/deep_ptune` and `low_cpu_mem_usage=True` (which is currently default).
- dtype mismatch between the prompts and the rest of the model in `.forward()`.
Currently, the schemas use `torch.float32`, so all inputs and outputs converted to float32 before sending and after receiving on both servers and clients. This creates a huge slowdown for the system.
* This PR makes the schemas use the server's `--torch_dtype` argument (default is `torch.bloat16` for BLOOM-176B)
* an option for client to request a specific output compression. Use case 1: client sends quantized inputs and expects quantized inputs in return. Use case 2: client uses quantization for gradients w.r.t. activations, but keeps grads w.r.t. __prompts__ as is for greater precision.
* a comment explaining the purpose of NoSpendingPolicy - since we likely won't have it for the workshop
* a test with custom compression (janky implementation for testing purposes)
Co-authored-by: justheuristic <justheuristic@gmail.com>
1. Petals can be now installed using `pip install git+https://github.com/bigscience-workshop/petals`
- In case if you already cloned the repo, you can do `pip install .` or `pip install .[dev]`
2. Moved `src` => `src/petals`
- Replaced `from src.smth import smth` with `from petals.smth import smth`
3. Moved `cli` => `src/petals/cli`
- Replaced `python -m cli.run_smth` with `python -m petals.cli.run_smth` (all utilities are now available right after pip installation)
4. Moved the `requirements*.txt` contents to `setup.cfg` (`requirements.txt` for packages is not supported well by modern packaging utils)
5. Increased the package version from `0.2` to `1.0alpha1`
This PR:
1. Makes inference/forward/backward calls on client remember the dtype and device of source tensors, then move/cast the outputs to the same dtype/device. This way:
- Users don't need to make changes in the code launching `RemoteSequential` to make it run on a different device.
- `model.generate()` also starts to support both CPU and GPU.
2. Sets default `low_cpu_mem_usage=True`, client's request timeout to 20 sec.
3. Removes excess casts to float32 left in Dmitry's code.
4. (minor) Improves error messages.
The goals of these changes are:
- Make Petals work in Colab right after just doing `pip install -r requirements.txt`
- Make tests work independently of the protobuf package version chosen while installing dependencies
- Before this PR, `ServerState.JOINING` was announced only once. This announcement quickly expires in case of the full-size BLOOM, since loading blocks takes several minutes. This PR fixes it, so `ServerState.JOINING` is announced periodically in a thread until blocks are loaded.
- This PR also makes the `Server` class a non-thread, so it runs in the main thread and can catch `KeyboardInterrupt`. This is important, since if we are downloading blocks right now, we need to stop it and send the `ServerState.OFFLINE` message. Note that `ModuleContainer` is still a thread.
- (minor) For the sake of readability, I moved the `ModuleContainer.create()` definition, so it is now defined before `Server.__init__()` (this is because `.create()` is invoked first).
This PR makes servers and clients use public swarm's bootstrap peers if no other initial peers are specified.
If you'd like a server to start a new swarm, provide the `--new_swarm` CLI argument.
- run_server now accepts model name as both positional and keyword argument
- changed names in README to account for interface updates
- moved model conversion from README to a separate wiki page
- updated requirements.txt
* update dependency versions
* install bitsandbytes cpuonly from pip
* remove deprecated API from task pool
* clearer startup logs
Co-authored-by: Tim Dettmers <dettmers@cs.washington.edu>