This PR makes both clients and servers work on macOS. Specifically, it:
- Follows https://github.com/learning-at-home/hivemind/pull/586 to run a macOS-compatible `p2pd` binary (both x86-64 and ARM64 are supported)
- Fixes forking issues and tests on macOS, Python 3.10+
- Introduces basic support for serving model blocks on Apple M1/M2 GPUs (torch.mps)
- Increases max number of open files by default (it's not enough on Linux and is really small on macOS)
Peft 0.5 recently released and broke some compatilibities. This PR temporarily requires petals to use the previous stable version of peft while we work on 0.5.0 support.
This PR:
1. **Adds shortest path routing for inference.** We build a graph with client-server and server-server latencies and compute costs, as well as empirically measured overheads. For client-server latencies, we ping possible first and last servers in a sequence in `SequenceManager.update()`. We penalize servers who may not have enough cache for our request. This uses info added to DHT in #355, #356, #358.
2. **Makes a server ping neighboring servers in addition to next ones.** This is to get an opportunity to change the server even before we use all its blocks (e.g., because a neighboring server is faster). This feature is not enabled though, since it increases graph size for N servers to O(N^2) - but we may enable it if needed.
3. **Fixes a `SequenceManager` bug with the first `update()`.** Previously, this update was likely to produce incorrect information and cause to `MissingBlocksErrors` until the next update happens.
Implement an option to deploy PEFT adapters to a server. Clients can set active_adapter=... to use these adapters.
---------
Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
Co-authored-by: justheuristic <justheuristic@gmail.com>
This PR:
1. **Abolishes the model conversion procedure.** Now, models are downloaded directly from original repositories like https://huggingface.co/bigscience/bloom. Servers download only shards with blocks to be hosted, and clients download only shards with input/output embeddings and layernorms.
- BLOOM is loaded from `bigscience/bloom`, but we use the DHT prefix `bigscience/bloom-petals` for backward compatibility. Same with smaller BLOOMs and BLOOMZ.
- LLaMA can be loaded from any repo like `username/llama-65b-hf`, but we use the DHT prefix `llama-65b-hf` (without the username) to accomodate blocks from different repos (there're a few of them with minor differences, such as `Llama` vs. `LLaMA` in the class name).
2. **Refactors the client to generalize it for multiple models.** Now, we have `petals.models` packages that contain model-specific code (e.g. `petals.models.bloom`, `petals.models.llama`). General code (e.g. CPU-efficient LM head, p-tuning) is kept in `petals.client`.
3. **Introduces** `WrappedLlamaBlock`, `DistributedLlamaConfig`, `DistributedLlamaForCausalLM`, `DistributedLlamaForSequenceClassification`, and `DistributedLlamaModel` compatible with Petals functionality (p-tuning, adapters, etc.).
4. **Introduces** `AutoDistributedConfig` that automatically chooses the correct config class (`DistributedLlamaConfig` or `DistributedBloomConfig`). The refactored configs contain all model-specific info for both clients and servers.
Upgrade instructions:
- Remove disk caches for blocks in old (converted) format to save disk space. That is, remove `~/.cache/petals/model--bigscience--bloom-petals` and `~/.cache/petals/model--bigscience--bloomz-petals` directories (if present).
- After #285, `load_pretrained_block()` uses `accelerate.utils.set_module_tensor_to_device()`
- In accelerate>=0.16.0, it saves the tensor in the dtype previously used by the model instead of dtype of the weights (https://github.com/huggingface/accelerate/pull/920)
- Because of that, blocks and attention caches used float32, which caused OOMs
- This PR makes `load_pretrained_block()` respect `torch_dtype` (default: `"auto"`, which means reading `torch_dtype` from `config.json`)
This PR fixes issues of #290:
- hivemind bfloat16 codec crashed on dummy tensors (with 0 elements), see https://github.com/learning-at-home/hivemind/pull/560 (this PR makes Petals depend on the latest hivemind version from the repo, it's temporary)
- transformers version check mismatched with the version allowed in `setup.cfg`
Also:
- This PR enables 8-bit by default for TP. Even though TP in 8-bit may be slower, we currently prefer to host more blocks to increase the network's stability.
- new bitsandbytes supports newer *and* older GPUs
- new hivemind supports a better bfloat16 codec
Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
Before this PR, `model.generate()` returned one excess token when resuming generation with an existing (the last token of the previous session, `session.last_token_id`). This is an unexpected behavior not convenient for the downstream apps, so this PR changes it until it's too late.
This PR:
1. Shows the current Petals version and checks for updates on startup.
2. Reports the current version and DHT mode in `rpc_info()`, so it can be shown on http://health.petals.ml or used on clients for efficient routing.
- Added relay options to servers
- Enabled relay options by default
- Changed hivemind version to 1.1.5
- Moved reachability check to be performed after blocks are loaded
Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
A correct protobuf version should be already installed by hivemind.
This also resolves version conflict on Colab, where protobuf versions required by Petals were different from the ones required by pre-installed tensorflow and tensorboard packages.
Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>
This pull request adds an option to run Petals server on multiple local GPUs. It uses https://github.com/BlackSamorez/tensor_parallel
- 8bit approximation error same as in main (mean~=2% q0.9~=5%)
- TP=1, 2, 3 (see screenshots above)
- forward, grad w.r.t. input and inference exact match with main with TP=1
- `>=`80% GPU utilization with 3x 1080ti, batch = 8 tokens
- throughput measured with and without TP
- TP on 1080Tis has near-linear speedup comparable to the benchmarks (see first message)
Co-authored-by: Iaroslav Lisniak <yalisnyak@nes.ru>
Co-authored-by: Andrei Panferov <andrei@blacksamorez.ru>
Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
This pullrequest removes custom speed_test code in favour of speedtest-cli module.
This is necessary to ensure that random warnings / print-outs do not mess with our outputs.
Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>
- latest accelerate, transformers, huggingface_hub
- rearrange attention caches to support https://github.com/huggingface/transformers/pull/18344
- remove unused code
- fix edge case where session crashes when receiving seq length 0
- assert transformer version when importing WrappedBloomBlock
Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>
1. Petals can be now installed using `pip install git+https://github.com/bigscience-workshop/petals`
- In case if you already cloned the repo, you can do `pip install .` or `pip install .[dev]`
2. Moved `src` => `src/petals`
- Replaced `from src.smth import smth` with `from petals.smth import smth`
3. Moved `cli` => `src/petals/cli`
- Replaced `python -m cli.run_smth` with `python -m petals.cli.run_smth` (all utilities are now available right after pip installation)
4. Moved the `requirements*.txt` contents to `setup.cfg` (`requirements.txt` for packages is not supported well by modern packaging utils)
5. Increased the package version from `0.2` to `1.0alpha1`