Commit Graph

9 Commits

Author SHA1 Message Date
Alexander Borzunov
8c546d988a
Test Llama, rebalancing, throughput eval, and all CLI scripts (#452)
This PR extends CI to:

1. Test Llama code using [TinyLlama-v0](https://huggingface.co/Maykeye/TinyLLama-v0).
2. Test rebalancing (sets up a situation where the 1st server needs to change its original position).
3. Check if benchmark scripts run (in case someone breaks its code). Note that the benchmark results are meaningless here (since they're measured on a tiny swarm of CPU servers, with low `--n_steps`).
4. Test `petals.cli.run_dht`.
5. Increase swap space and watch free RAM (a common issue is that actions are cancelled without explanation if there's not enough RAM - so it's a useful reminder + debug tool).
6. Fix flapping tests for bloom-560m by increasing tolerance.

Other minor changes: fix `--help` messages to show defaults, fix docs, tune rebalancing constants.
2023-08-08 19:10:27 +04:00
Alexander Borzunov
cb3f018f9f
Add LLaMA support (#323)
This PR:

1. **Abolishes the model conversion procedure.** Now, models are downloaded directly from original repositories like https://huggingface.co/bigscience/bloom. Servers download only shards with blocks to be hosted, and clients download only shards with input/output embeddings and layernorms.

    - BLOOM is loaded from `bigscience/bloom`, but we use the DHT prefix `bigscience/bloom-petals` for backward compatibility. Same with smaller BLOOMs and BLOOMZ.
    - LLaMA can be loaded from any repo like `username/llama-65b-hf`, but we use the DHT prefix `llama-65b-hf` (without the username) to accomodate blocks from different repos (there're a few of them with minor differences, such as `Llama` vs. `LLaMA` in the class name).

2. **Refactors the client to generalize it for multiple models.** Now, we have `petals.models` packages that contain model-specific code (e.g. `petals.models.bloom`, `petals.models.llama`). General code (e.g. CPU-efficient LM head, p-tuning) is kept in `petals.client`.

3. **Introduces** `WrappedLlamaBlock`, `DistributedLlamaConfig`, `DistributedLlamaForCausalLM`, `DistributedLlamaForSequenceClassification`, and `DistributedLlamaModel` compatible with Petals functionality (p-tuning, adapters, etc.).

4. **Introduces** `AutoDistributedConfig` that automatically chooses the correct config class (`DistributedLlamaConfig` or `DistributedBloomConfig`). The refactored configs contain all model-specific info for both clients and servers.

Upgrade instructions:

- Remove disk caches for blocks in old (converted) format to save disk space. That is, remove `~/.cache/petals/model--bigscience--bloom-petals` and  `~/.cache/petals/model--bigscience--bloomz-petals` directories (if present).
2023-06-23 15:46:10 +04:00
Alexander Borzunov
8f6342a861
Refactor RemoteSequenceManager (#309)
This PR:

1. **Extracts `SequenceManagerConfig` and `SequenceManagerState` subclasses.**

    The config is provided by caller and never changed from inside `RemoteSequenceManager`. The state is a part of the `RemoteSequenceManager`'s state shared between the main manager and its slices. We fix some slicing bugs along the way.

2. **Removes `dht_prefix` and `p2p` arguments, makes `dht` argument optional.**

    `dht_prefix` can always be overridden using `config.dht_prefix`. `p2p` actually needed only under the hood of `RemoteSequenceManager`, so it can extract it by itself without exposing this low-level class to callers. If strictly necessary, a caller can provide `p2p` as a part of `SequenceManagerState`. `dht` is also needed only by `RemoteSequenceManager`, so we can make it optional in the parent classes and create it automatically when it's not provided.

3. **Simplifies retry logic.**

    Previously, we could have "nested" retry loops: one in `._update()`, another in inference/forward/backward steps. The loop in `._update()` could introduce issues to concurrent inference/forward/backward calls, since it blocks the entire class if its delay period becomes too high. Now this logic is simplified: `._update()` performs only one attempt to fetch the DHT info, any retries are triggered by the inference/forward/backward steps.

4. **Removes deprecated `RemoteTransformerBlock`.**

    `RemoteTransformerBlock` was deprecated a long time ago, before Petals 1.0.0. Its removal is long due.

5. **Removes `dht_utils.get_remote_module()`, `dht_utils.get_remote_sequence()`.**

    This functions duplicate the functionality of the `RemoteSequential` constructor.

6. (minor) **Removes `RemoteSequential.is_subsequence` flag.**

    This flag worked incorrectly and was never used. I am removing it for the sake of simplicity.
2023-05-07 13:41:13 +04:00
Max Ryabinin
793726b041
Speed up loading blocks using init with meta weights (#285)
* Init WrappedBloomBlock with meta weights

---------

Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
2023-03-13 00:49:04 +03:00
Alexander Borzunov
7bd5916744
Make Petals a pip-installable package (attempt 2) (#102)
1. Petals can be now installed using `pip install git+https://github.com/bigscience-workshop/petals`
    - In case if you already cloned the repo, you can do `pip install .` or `pip install .[dev]`
2. Moved `src` => `src/petals`
    - Replaced `from src.smth import smth` with `from petals.smth import smth`
3. Moved `cli` => `src/petals/cli`
    - Replaced `python -m cli.run_smth` with `python -m petals.cli.run_smth` (all utilities are now available right after pip installation)
4. Moved the `requirements*.txt` contents to `setup.cfg` (`requirements.txt` for packages is not supported well by modern packaging utils)
5. Increased the package version from `0.2` to `1.0alpha1`
2022-11-30 10:41:13 +04:00
Pavel Samygin
0be21775af
remove transformer block, implement as sequential of size 1 (#54)
* remove transformer block, implement as sequence size 1
* reimplement get_remote_module
* fix readme

Co-authored-by: Alexander Borzunov <hxrussia@gmail.com>
Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
2022-09-01 04:26:31 +03:00
justheuristic
d271b75dd4
Let users specify sequence length instead of assuming 2048 (#52)
- Maximum length is now provided in `.inference_session(max_length=100)`
   - previously, we would always assume max length = 2048
- added a generic way to forward **kwargs to inference session
  - for compatibility with #47 
  - Note to @borzunov : it does *not* pass them arbitrarily, but instead checks for kwarg names at the bottom level
- run_server can be started with a custom max_length for inference
- renamed --cache_size_bytes to --attention_cache_bytes (to avoid collision with --cache_dir)
- --attn_cache_bytes can now support humane file sizes (e.g. 300MB instead of 314572800)
- made some server-side errors more human-readable to user (e.g. when max length is exceeded)

Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
Co-authored-by: Alexander Borzunov <hxrussia@gmail.com>
2022-08-29 21:04:37 +03:00
justheuristic
f0c7383181
Implement RemoteSequential slicing and extra repr, add tests (#30)
- finish renaming RemoteSequenceInfo -> RemoteSequenceManager (why: if it was an *Info, user would expect it to be similar - to a dataclass; whereas in actuality, the class is doing heavy network interactions on its own)
- implement RemoteSequenceManager.make_sequence (from https://pastebin.com/uXgy2U8B )
- make RemoteSequentialInferenceSession use RemoteSequenceManager.make_sequence
- make tests pass again
- make it possible to create inference session without RemoteTransformerBlock
- make a standalone test for RemoteSequential
- rollback convert-model

Co-authored-by: Tim Dettmers <tim.dettmers@gmail.com>
2022-07-19 04:28:04 +03:00
justheuristic
e2711a033b
Add automated tests (#23)
This PR will run basic tests automatically on each subsequent PR

- convert a small model on every PR
- run existing tests on every PR
- enforce black / isort
- require checks on merge
- make sure tests are not flappy

Co-authored-by: Alexander Borzunov <hxrussia@gmail.com>
Co-authored-by: Dmitry Baranchuk <dmitrybaranchuk@gmail.com>
2022-07-16 01:59:23 +03:00