petals/tests/test_chained_calls.py

78 lines
3.0 KiB
Python
Raw Normal View History

######
# Warning:torch this test is a work in progress. It will be modified soon.
# - if you want more stable tests, see test_block_exact_match
# - if you want to figure out chained inference, ask yozh
import pytest
import torch
from petals import AutoDistributedConfig
from petals.client.remote_sequential import RemoteSequential
Add LLaMA support (#323) This PR: 1. **Abolishes the model conversion procedure.** Now, models are downloaded directly from original repositories like https://huggingface.co/bigscience/bloom. Servers download only shards with blocks to be hosted, and clients download only shards with input/output embeddings and layernorms. - BLOOM is loaded from `bigscience/bloom`, but we use the DHT prefix `bigscience/bloom-petals` for backward compatibility. Same with smaller BLOOMs and BLOOMZ. - LLaMA can be loaded from any repo like `username/llama-65b-hf`, but we use the DHT prefix `llama-65b-hf` (without the username) to accomodate blocks from different repos (there're a few of them with minor differences, such as `Llama` vs. `LLaMA` in the class name). 2. **Refactors the client to generalize it for multiple models.** Now, we have `petals.models` packages that contain model-specific code (e.g. `petals.models.bloom`, `petals.models.llama`). General code (e.g. CPU-efficient LM head, p-tuning) is kept in `petals.client`. 3. **Introduces** `WrappedLlamaBlock`, `DistributedLlamaConfig`, `DistributedLlamaForCausalLM`, `DistributedLlamaForSequenceClassification`, and `DistributedLlamaModel` compatible with Petals functionality (p-tuning, adapters, etc.). 4. **Introduces** `AutoDistributedConfig` that automatically chooses the correct config class (`DistributedLlamaConfig` or `DistributedBloomConfig`). The refactored configs contain all model-specific info for both clients and servers. Upgrade instructions: - Remove disk caches for blocks in old (converted) format to save disk space. That is, remove `~/.cache/petals/model--bigscience--bloom-petals` and `~/.cache/petals/model--bigscience--bloomz-petals` directories (if present).
2023-06-23 11:46:10 +00:00
from petals.server.from_pretrained import load_pretrained_block
2024-04-08 17:27:10 +00:00
from petals.utils.misc import DUMMY_KEY_PAST
from test_utils import *
@pytest.mark.forked
def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq_length=1):
config = AutoDistributedConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS)
Refactor RemoteSequenceManager (#309) This PR: 1. **Extracts `SequenceManagerConfig` and `SequenceManagerState` subclasses.** The config is provided by caller and never changed from inside `RemoteSequenceManager`. The state is a part of the `RemoteSequenceManager`'s state shared between the main manager and its slices. We fix some slicing bugs along the way. 2. **Removes `dht_prefix` and `p2p` arguments, makes `dht` argument optional.** `dht_prefix` can always be overridden using `config.dht_prefix`. `p2p` actually needed only under the hood of `RemoteSequenceManager`, so it can extract it by itself without exposing this low-level class to callers. If strictly necessary, a caller can provide `p2p` as a part of `SequenceManagerState`. `dht` is also needed only by `RemoteSequenceManager`, so we can make it optional in the parent classes and create it automatically when it's not provided. 3. **Simplifies retry logic.** Previously, we could have "nested" retry loops: one in `._update()`, another in inference/forward/backward steps. The loop in `._update()` could introduce issues to concurrent inference/forward/backward calls, since it blocks the entire class if its delay period becomes too high. Now this logic is simplified: `._update()` performs only one attempt to fetch the DHT info, any retries are triggered by the inference/forward/backward steps. 4. **Removes deprecated `RemoteTransformerBlock`.** `RemoteTransformerBlock` was deprecated a long time ago, before Petals 1.0.0. Its removal is long due. 5. **Removes `dht_utils.get_remote_module()`, `dht_utils.get_remote_sequence()`.** This functions duplicate the functionality of the `RemoteSequential` constructor. 6. (minor) **Removes `RemoteSequential.is_subsequence` flag.** This flag worked incorrectly and was never used. I am removing it for the sake of simplicity.
2023-05-07 09:41:13 +00:00
remote_blocks = RemoteSequential(config, start_block=3, end_block=6)
assert isinstance(remote_blocks, RemoteSequential)
ref_blocks = [
load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32),
load_pretrained_block(MODEL_NAME, 4, torch_dtype=torch.float32),
load_pretrained_block(MODEL_NAME, 5, torch_dtype=torch.float32),
]
inputs = torch.randn(1, seq_length, config.hidden_size, requires_grad=True)
outputs_rpc = remote_blocks.forward(inputs)
outputs_rpc.sum().backward()
grads_rpc = inputs.grad
inputs.grad = None
hidden_states = inputs
for ref_block in ref_blocks:
hidden_states = ref_block.forward(hidden_states)[0]
outputs_ref = hidden_states
outputs_ref.sum().backward()
grads_ref = inputs.grad
assert torch.allclose(outputs_ref, outputs_rpc, rtol=0, atol=atol_forward)
assert torch.allclose(grads_ref, grads_rpc, rtol=0, atol=atol_backward)
@pytest.mark.forked
def test_chained_inference_exact_match(atol_inference=1e-4):
config = AutoDistributedConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS)
Refactor RemoteSequenceManager (#309) This PR: 1. **Extracts `SequenceManagerConfig` and `SequenceManagerState` subclasses.** The config is provided by caller and never changed from inside `RemoteSequenceManager`. The state is a part of the `RemoteSequenceManager`'s state shared between the main manager and its slices. We fix some slicing bugs along the way. 2. **Removes `dht_prefix` and `p2p` arguments, makes `dht` argument optional.** `dht_prefix` can always be overridden using `config.dht_prefix`. `p2p` actually needed only under the hood of `RemoteSequenceManager`, so it can extract it by itself without exposing this low-level class to callers. If strictly necessary, a caller can provide `p2p` as a part of `SequenceManagerState`. `dht` is also needed only by `RemoteSequenceManager`, so we can make it optional in the parent classes and create it automatically when it's not provided. 3. **Simplifies retry logic.** Previously, we could have "nested" retry loops: one in `._update()`, another in inference/forward/backward steps. The loop in `._update()` could introduce issues to concurrent inference/forward/backward calls, since it blocks the entire class if its delay period becomes too high. Now this logic is simplified: `._update()` performs only one attempt to fetch the DHT info, any retries are triggered by the inference/forward/backward steps. 4. **Removes deprecated `RemoteTransformerBlock`.** `RemoteTransformerBlock` was deprecated a long time ago, before Petals 1.0.0. Its removal is long due. 5. **Removes `dht_utils.get_remote_module()`, `dht_utils.get_remote_sequence()`.** This functions duplicate the functionality of the `RemoteSequential` constructor. 6. (minor) **Removes `RemoteSequential.is_subsequence` flag.** This flag worked incorrectly and was never used. I am removing it for the sake of simplicity.
2023-05-07 09:41:13 +00:00
remote_blocks = RemoteSequential(config, start_block=3, end_block=5)
inputs = torch.randn(1, 8, config.hidden_size)
outputs_inference = []
with remote_blocks.inference_session(max_length=inputs.shape[1]) as sess:
for i in range(inputs.shape[1]):
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
outputs_inference = torch.cat(outputs_inference, dim=1)
2024-04-08 17:27:10 +00:00
dtype = torch.float32
ref_blocks = [
2024-04-08 17:27:10 +00:00
load_pretrained_block(MODEL_NAME, 3, torch_dtype=dtype),
load_pretrained_block(MODEL_NAME, 4, torch_dtype=dtype),
]
outputs_ref = []
2024-04-08 17:34:47 +00:00
cache = (DUMMY_KEY_PAST.to(dtype), DUMMY_KEY_PAST.to(dtype))
caches = [cache, cache]
for i in range(inputs.shape[1]):
new_caches = []
hidden_states = inputs[:, i : i + 1, :]
for ref_block, cache in zip(ref_blocks, caches):
with torch.no_grad():
hidden_states, new_cache = ref_block.forward(hidden_states, use_cache=True, layer_past=cache)
new_caches.append(new_cache)
outputs_ref.append(hidden_states)
caches = new_caches
outputs_ref = torch.cat(outputs_ref, dim=1)
assert torch.allclose(outputs_ref, outputs_inference, rtol=0, atol=atol_inference)