You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
patterns/idioms/ffi-errors.md

3.5 KiB

Error Handling in FFI

Description

In foreign languages like C, errors are represented by return codes. However, Rust's type system allows much more rich error information to be captured a propogated through a full type.

This best practice shows different kinds of error codes, and how to expose them in a usable way:

  1. Flat Enums should be converted to integers and returned as codes.
  2. Structured Enums should be converted to an integer code with a string error message for detail.
  3. Custom Error Types should become "transparent", with a C representation.

Code Example

Flat Enums

enum DatabaseError {
    IsReadOnly = 1, // user attempted a write operation
    IOError = 2, // user should read the C errno() for what it was
    FileCorrupted = 3, // user should run a repair tool to recover it
}

impl From<DatabaseError> for libc::c_int {
    fn from(e: DatabaseError) -> libc::c_int {
        (e as i8).into()
    }
}

Structured Enums

pub mod errors {
    enum DatabaseError {
        IsReadOnly,
        IOError(std::io::Error),
        FileCorrupted(String), // message describing the issue
    }

    impl From<DatabaseError> for libc::c_int {
        fn from(e: DatabaseError) -> libc::c_int {
            match e {
                DatabaseError::IsReadOnly => 1,
                DatabaseError::IOError(_) => 2,
                DatabaseError::FileCorrupted(_) => 3,
            }
        }
    }
}

pub mod c_api {
    use super::errors::DatabaseError;

    #[no_mangle]
    pub extern "C" fn db_error_description(
        e: *const DatabaseError
        ) -> *mut libc::c_char {

        let error: &DatabaseError = unsafe {
            // SAFETY: pointer lifetime is greater than the current stack frame
            &*e
        };

        let error_str: String = match error {
            DatabaseError::IsReadOnly => {
                format!("cannot write to read-only database");
            }
            DatabaseError::IOError(e) => {
                format!("I/O Error: {}", e);
            }
            DatabaseError::FileCorrupted(s) => {
                format!("File corrupted, run repair: {}", &s);
            }
        };

        let c_error = unsafe {
            // SAFETY: copying error_str to an allocated buffer with a NUL
            // character at the end
            let mut malloc: *mut u8 = libc::malloc(error_str.len() + 1) as *mut _;

            if malloc.is_null() {
                return std::ptr::null_mut();
            }

            let src = error_str.as_bytes().as_ptr();

            std::ptr::copy_nonoverlapping(src, malloc, error_str.len());

            std::ptr::write(malloc.add(error_str.len()), 0);

            malloc as *mut libc::c_char
        };

        c_error
    }
}

Custom Error Types

struct ParseError {
    expected: char,
    line: u32,
    ch: u16
}

impl ParseError { /* ... */ }

/* Create a second version which is exposed as a C structure */
#[repr(C)]
pub struct parse_error {
    pub expected: libc::c_char,
    pub line: u32,
    pub ch: u16
}

impl From<ParseError> for parse_error {
    fn from(e: ParseError) -> parse_error {
        let ParseError { expected, line, ch } = e;
        parse_error { expected, line, ch }
    }
}

Advantages

This ensures that the foreign language has clear access to error information while not compromising the Rust code's API at all.

Disadvantages

It's a lot of typing, and some types may not be able to be converted easily to C.