forgot github link, etc

pull/73/head
Ben Hansen 4 years ago
parent 0ae192f440
commit 252ca8b909

@ -1,31 +0,0 @@
[package]
name = "tutorial11-normals"
version = "0.1.0"
authors = ["Ben Hansen <bhbenjaminhansen@gmail.com>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
image = "0.23"
winit = "0.22"
shaderc = "0.6"
# cgmath = "0.17"
failure = "0.1"
tobj = "1"
bytemuck = "1.2"
futures = "0.3.4"
wgpu = "0.5.0"
[dependencies.cgmath]
version = "0.17"
features = ["swizzle"]
[[bin]]
name = "tutorial11-normals"
path = "src/main.rs"
# [[bin]]
# name = "tutorial10-challenge"
# path = "src/challenge.rs"

@ -1,8 +0,0 @@
#version 450
layout(location=0) in vec3 v_color;
layout(location=0) out vec4 f_color;
void main() {
f_color = vec4(v_color, 1.0);
}

@ -1,27 +0,0 @@
#version 450
layout(location=0) in vec3 a_position;
layout(location=0) out vec3 v_color;
layout(set=0, binding=0)
uniform Uniforms {
vec3 u_view_position;
mat4 u_view_proj;
};
layout(set=1, binding=0)
uniform Light {
vec3 u_position;
vec3 u_color;
};
// Let's keep our light smaller than our other objects
float scale = 0.25;
void main() {
vec3 v_position = a_position * scale + u_position;
gl_Position = u_view_proj * vec4(v_position, 1);
v_color = u_color;
}

@ -1,728 +0,0 @@
use cgmath::prelude::*;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::Window,
};
mod model;
mod texture;
use model::{DrawLight, DrawModel, Vertex};
#[cfg_attr(rustfmt, rustfmt_skip)]
pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4<f32> = cgmath::Matrix4::new(
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.0, 0.0, 0.5, 1.0,
);
const NUM_INSTANCES_PER_ROW: u32 = 10;
struct Camera {
eye: cgmath::Point3<f32>,
target: cgmath::Point3<f32>,
up: cgmath::Vector3<f32>,
aspect: f32,
fovy: f32,
znear: f32,
zfar: f32,
}
impl Camera {
fn build_view_projection_matrix(&self) -> cgmath::Matrix4<f32> {
let view = cgmath::Matrix4::look_at(self.eye, self.target, self.up);
let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar);
return proj * view;
}
}
#[repr(C)]
#[derive(Copy, Clone)]
struct Uniforms {
view_position: cgmath::Vector4<f32>,
view_proj: cgmath::Matrix4<f32>,
}
impl Uniforms {
fn new() -> Self {
Self {
view_position: Zero::zero(),
view_proj: cgmath::Matrix4::identity(),
}
}
fn update_view_proj(&mut self, camera: &Camera) {
self.view_position = camera.eye.to_homogeneous();
self.view_proj = OPENGL_TO_WGPU_MATRIX * camera.build_view_projection_matrix();
}
}
unsafe impl bytemuck::Zeroable for Uniforms {}
unsafe impl bytemuck::Pod for Uniforms {}
struct CameraController {
speed: f32,
is_up_pressed: bool,
is_down_pressed: bool,
is_forward_pressed: bool,
is_backward_pressed: bool,
is_left_pressed: bool,
is_right_pressed: bool,
}
impl CameraController {
fn new(speed: f32) -> Self {
Self {
speed,
is_up_pressed: false,
is_down_pressed: false,
is_forward_pressed: false,
is_backward_pressed: false,
is_left_pressed: false,
is_right_pressed: false,
}
}
fn process_events(&mut self, event: &WindowEvent) -> bool {
match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
state,
virtual_keycode: Some(keycode),
..
},
..
} => {
let is_pressed = *state == ElementState::Pressed;
match keycode {
VirtualKeyCode::Space => {
self.is_up_pressed = is_pressed;
true
}
VirtualKeyCode::LShift => {
self.is_down_pressed = is_pressed;
true
}
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.is_forward_pressed = is_pressed;
true
}
VirtualKeyCode::A | VirtualKeyCode::Left => {
self.is_left_pressed = is_pressed;
true
}
VirtualKeyCode::S | VirtualKeyCode::Down => {
self.is_backward_pressed = is_pressed;
true
}
VirtualKeyCode::D | VirtualKeyCode::Right => {
self.is_right_pressed = is_pressed;
true
}
_ => false,
}
}
_ => false,
}
}
fn update_camera(&self, camera: &mut Camera) {
let forward = camera.target - camera.eye;
let forward_norm = forward.normalize();
let forward_mag = forward.magnitude();
// Prevents glitching when camera gets too close to the
// center of the scene.
if self.is_forward_pressed && forward_mag > self.speed {
camera.eye += forward_norm * self.speed;
}
if self.is_backward_pressed {
camera.eye -= forward_norm * self.speed;
}
let right = forward_norm.cross(camera.up);
// Redo radius calc in case the up/ down is pressed.
let forward = camera.target - camera.eye;
let forward_mag = forward.magnitude();
if self.is_right_pressed {
// Rescale the distance between the target and eye so
// that it doesn't change. The eye therefore still
// lies on the circle made by the target and eye.
camera.eye = camera.target - (forward + right * self.speed).normalize() * forward_mag;
}
if self.is_left_pressed {
camera.eye = camera.target - (forward - right * self.speed).normalize() * forward_mag;
}
}
}
struct Instance {
position: cgmath::Vector3<f32>,
rotation: cgmath::Quaternion<f32>,
}
impl Instance {
fn to_raw(&self) -> InstanceRaw {
InstanceRaw {
model: cgmath::Matrix4::from_translation(self.position) * cgmath::Matrix4::from(self.rotation),
}
}
}
#[derive(Copy, Clone)]
struct InstanceRaw {
#[allow(dead_code)]
model: cgmath::Matrix4<f32>,
}
unsafe impl bytemuck::Pod for InstanceRaw {}
unsafe impl bytemuck::Zeroable for InstanceRaw {}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
struct Light {
position: cgmath::Vector3<f32>,
// Due to uniforms requiring 16 byte (4 float) spacing, we need to use a padding field here
_padding: u32,
color: cgmath::Vector3<f32>,
}
unsafe impl bytemuck::Zeroable for Light {}
unsafe impl bytemuck::Pod for Light {}
struct State {
surface: wgpu::Surface,
device: wgpu::Device,
queue: wgpu::Queue,
sc_desc: wgpu::SwapChainDescriptor,
swap_chain: wgpu::SwapChain,
render_pipeline: wgpu::RenderPipeline,
obj_model: model::Model,
camera: Camera,
camera_controller: CameraController,
uniforms: Uniforms,
uniform_buffer: wgpu::Buffer,
uniform_bind_group: wgpu::BindGroup,
instances: Vec<Instance>,
#[allow(dead_code)]
instance_buffer: wgpu::Buffer,
depth_texture: texture::Texture,
size: winit::dpi::PhysicalSize<u32>,
light: Light,
light_buffer: wgpu::Buffer,
light_bind_group: wgpu::BindGroup,
light_render_pipeline: wgpu::RenderPipeline,
#[allow(dead_code)]
debug_material: model::Material,
}
fn create_render_pipeline(
device: &wgpu::Device,
layout: &wgpu::PipelineLayout,
color_format: wgpu::TextureFormat,
depth_format: Option<wgpu::TextureFormat>,
vertex_descs: &[wgpu::VertexBufferDescriptor],
vs_src: &str,
fs_src: &str,
) -> wgpu::RenderPipeline {
let mut compiler = shaderc::Compiler::new().unwrap();
let vs_spirv = compiler.compile_into_spirv(vs_src, shaderc::ShaderKind::Vertex, "shader.vert", "main", None).unwrap();
let fs_spirv = compiler.compile_into_spirv(fs_src, shaderc::ShaderKind::Fragment, "shader.frag", "main", None).unwrap();
let vs_data = wgpu::read_spirv(std::io::Cursor::new(vs_spirv.as_binary_u8())).unwrap();
let fs_data = wgpu::read_spirv(std::io::Cursor::new(fs_spirv.as_binary_u8())).unwrap();
let vs_module = device.create_shader_module(&vs_data);
let fs_module = device.create_shader_module(&fs_data);
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
layout: &layout,
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs_module,
entry_point: "main",
},
fragment_stage: Some(wgpu::ProgrammableStageDescriptor {
module: &fs_module,
entry_point: "main",
}),
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: wgpu::FrontFace::Ccw,
cull_mode: wgpu::CullMode::Back,
depth_bias: 0,
depth_bias_slope_scale: 0.0,
depth_bias_clamp: 0.0,
}),
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: &[wgpu::ColorStateDescriptor {
format: color_format,
color_blend: wgpu::BlendDescriptor::REPLACE,
alpha_blend: wgpu::BlendDescriptor::REPLACE,
write_mask: wgpu::ColorWrite::ALL,
}],
depth_stencil_state: depth_format.map(|format| wgpu::DepthStencilStateDescriptor {
format,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil_front: wgpu::StencilStateFaceDescriptor::IGNORE,
stencil_back: wgpu::StencilStateFaceDescriptor::IGNORE,
stencil_read_mask: 0,
stencil_write_mask: 0,
}),
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
vertex_state: wgpu::VertexStateDescriptor {
index_format: wgpu::IndexFormat::Uint32,
vertex_buffers: vertex_descs,
},
})
}
impl State {
async fn new(window: &Window) -> Self {
let size = window.inner_size();
let surface = wgpu::Surface::create(window);
let adapter = wgpu::Adapter::request(
&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::Default,
compatible_surface: Some(&surface),
},
wgpu::BackendBit::PRIMARY, // Vulkan + Metal + DX12 + Browser WebGPU
).await.unwrap();
let (device, queue) = adapter.request_device(&wgpu::DeviceDescriptor {
extensions: wgpu::Extensions {
anisotropic_filtering: false,
},
limits: Default::default(),
}).await;
let sc_desc = wgpu::SwapChainDescriptor {
usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT,
format: wgpu::TextureFormat::Bgra8UnormSrgb,
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
let swap_chain = device.create_swap_chain(&surface, &sc_desc);
let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
multisampled: false,
component_type: wgpu::TextureComponentType::Float,
dimension: wgpu::TextureViewDimension::D2,
},
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler { comparison: false },
},
// normal map
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
multisampled: false,
component_type: wgpu::TextureComponentType::Float,
dimension: wgpu::TextureViewDimension::D2,
},
},
wgpu::BindGroupLayoutEntry {
binding: 3,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler { comparison: false },
},
],
label: None,
});
let camera = Camera {
eye: (0.0, 5.0, -10.0).into(),
target: (0.0, 0.0, 0.0).into(),
up: cgmath::Vector3::unit_y(),
aspect: sc_desc.width as f32 / sc_desc.height as f32,
fovy: 45.0,
znear: 0.1,
zfar: 100.0,
};
let camera_controller = CameraController::new(0.2);
let mut uniforms = Uniforms::new();
uniforms.update_view_proj(&camera);
let uniform_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&[uniforms]),
wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
);
const SPACE_BETWEEN: f32 = 3.0;
let instances = (0..NUM_INSTANCES_PER_ROW)
.flat_map(|z| {
(0..NUM_INSTANCES_PER_ROW).map(move |x| {
let x = SPACE_BETWEEN * (x as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let z = SPACE_BETWEEN * (z as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let position = cgmath::Vector3 { x, y: 0.0, z };
let rotation = if position.is_zero() {
cgmath::Quaternion::from_axis_angle(
cgmath::Vector3::unit_z(),
cgmath::Deg(0.0),
)
} else {
cgmath::Quaternion::from_axis_angle(
position.clone().normalize(),
cgmath::Deg(45.0),
)
};
Instance { position, rotation }
})
})
.collect::<Vec<_>>();
let instance_data = instances
.iter()
.map(Instance::to_raw)
.collect::<Vec<_>>();
let instance_buffer_size =
instance_data.len() * std::mem::size_of::<cgmath::Matrix4<f32>>();
let instance_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&instance_data),
wgpu::BufferUsage::STORAGE_READ | wgpu::BufferUsage::COPY_DST,
);
let uniform_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::UniformBuffer { dynamic: false },
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::VERTEX,
ty: wgpu::BindingType::StorageBuffer {
dynamic: false,
readonly: true,
},
},
],
label: None,
});
let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &uniform_bind_group_layout,
bindings: &[
wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::Buffer {
buffer: &uniform_buffer,
range: 0..std::mem::size_of_val(&uniforms) as wgpu::BufferAddress,
},
},
wgpu::Binding {
binding: 1,
resource: wgpu::BindingResource::Buffer {
buffer: &instance_buffer,
range: 0..instance_buffer_size as wgpu::BufferAddress,
},
},
],
label: None,
});
let (obj_model, cmds) =
model::Model::load(&device, &texture_bind_group_layout, "code/intermediate/tutorial10-lighting/src/res/cube.obj").unwrap();
queue.submit(&cmds);
let light = Light {
position: (2.0, 2.0, 2.0).into(),
_padding: 0,
color: (1.0, 1.0, 1.0).into(),
};
let light_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&[light]),
wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
);
let light_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::UniformBuffer { dynamic: false },
}],
label: None,
});
let light_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &light_bind_group_layout,
bindings: &[wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::Buffer {
buffer: &light_buffer,
range: 0..std::mem::size_of_val(&light) as wgpu::BufferAddress,
},
}],
label: None,
});
let depth_texture = texture::Texture::create_depth_texture(&device, &sc_desc, "depth_texture");
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
bind_group_layouts: &[
&texture_bind_group_layout,
&uniform_bind_group_layout,
&light_bind_group_layout,
],
});
let render_pipeline = {
let vs_src = include_str!("shader.vert");
let fs_src = include_str!("shader.frag");
create_render_pipeline(
&device,
&render_pipeline_layout,
sc_desc.format,
Some(texture::Texture::DEPTH_FORMAT),
&[model::ModelVertex::desc()],
vs_src,
fs_src,
)
};
let light_render_pipeline = {
let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
bind_group_layouts: &[&uniform_bind_group_layout, &light_bind_group_layout],
});
let vs_src = include_str!("light.vert");
let fs_src = include_str!("light.frag");
create_render_pipeline(
&device,
&layout,
sc_desc.format,
Some(texture::Texture::DEPTH_FORMAT),
&[model::ModelVertex::desc()],
vs_src,
fs_src,
)
};
let debug_material = {
let diffuse_bytes = include_bytes!("res/cobble-diffuse.png");
let normal_bytes = include_bytes!("res/cobble-normal.png");
let mut command_buffers = vec![];
let (diffuse_texture, cmds) = texture::Texture::from_bytes(&device, diffuse_bytes, "res/alt-diffuse.png", false).unwrap();
command_buffers.push(cmds);
let (normal_texture, cmds) = texture::Texture::from_bytes(&device, normal_bytes, "res/alt-normal.png", true).unwrap();
command_buffers.push(cmds);
queue.submit(&command_buffers);
model::Material::new(&device, "alt-material", diffuse_texture, normal_texture, &texture_bind_group_layout)
};
Self {
surface,
device,
queue,
sc_desc,
swap_chain,
render_pipeline,
obj_model,
camera,
camera_controller,
uniform_buffer,
uniform_bind_group,
uniforms,
instances,
instance_buffer,
depth_texture,
size,
light,
light_buffer,
light_bind_group,
light_render_pipeline,
#[allow(dead_code)]
debug_material,
}
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
self.camera.aspect = self.sc_desc.width as f32 / self.sc_desc.height as f32;
self.size = new_size;
self.sc_desc.width = new_size.width;
self.sc_desc.height = new_size.height;
self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc);
self.depth_texture = texture::Texture::create_depth_texture(&self.device, &self.sc_desc, "depth_texture");
}
fn input(&mut self, event: &WindowEvent) -> bool {
self.camera_controller.process_events(event)
}
fn update(&mut self) {
self.camera_controller.update_camera(&mut self.camera);
self.uniforms.update_view_proj(&self.camera);
let mut encoder =
self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
let staging_buffer = self.device.create_buffer_with_data(
bytemuck::cast_slice(&[self.uniforms]),
wgpu::BufferUsage::COPY_SRC,
);
encoder.copy_buffer_to_buffer(
&staging_buffer,
0,
&self.uniform_buffer,
0,
std::mem::size_of::<Uniforms>() as wgpu::BufferAddress,
);
// Update the light
let old_position = self.light.position;
self.light.position =
cgmath::Quaternion::from_axis_angle((0.0, 1.0, 0.0).into(), cgmath::Deg(1.0))
* old_position;
let staging_buffer = self.device.create_buffer_with_data(
bytemuck::cast_slice(&[self.light]),
wgpu::BufferUsage::COPY_SRC,
);
encoder.copy_buffer_to_buffer(
&staging_buffer,
0,
&self.light_buffer,
0,
std::mem::size_of::<Light>() as wgpu::BufferAddress,
);
self.queue.submit(&[encoder.finish()]);
}
fn render(&mut self) {
let frame = self.swap_chain.get_next_texture()
.expect("Timeout getting texture");
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: None
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor {
attachment: &frame.view,
resolve_target: None,
load_op: wgpu::LoadOp::Clear,
store_op: wgpu::StoreOp::Store,
clear_color: wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
},
}],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor {
attachment: &self.depth_texture.view,
depth_load_op: wgpu::LoadOp::Clear,
depth_store_op: wgpu::StoreOp::Store,
clear_depth: 1.0,
stencil_load_op: wgpu::LoadOp::Clear,
stencil_store_op: wgpu::StoreOp::Store,
clear_stencil: 0,
}),
});
render_pass.set_pipeline(&self.light_render_pipeline);
render_pass.draw_light_model(
&self.obj_model,
&self.uniform_bind_group,
&self.light_bind_group,
);
render_pass.set_pipeline(&self.render_pipeline);
render_pass.draw_model_instanced(
&self.obj_model,
0..self.instances.len() as u32,
&self.uniform_bind_group,
&self.light_bind_group,
);
}
self.queue.submit(&[encoder.finish()]);
}
}
fn main() {
let event_loop = EventLoop::new();
let title = env!("CARGO_PKG_NAME");
let window = winit::window::WindowBuilder::new()
.with_title(title)
.build(&event_loop)
.unwrap();
use futures::executor::block_on;
let mut state = block_on(State::new(&window));
event_loop.run(move |event, _, control_flow| {
*control_flow = ControlFlow::Poll;
match event {
Event::MainEventsCleared => window.request_redraw(),
Event::WindowEvent {
ref event,
window_id,
} if window_id == window.id() => {
if !state.input(event) {
match event {
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::KeyboardInput { input, .. } => match input {
KeyboardInput {
state: ElementState::Pressed,
virtual_keycode: Some(VirtualKeyCode::Escape),
..
} => {
*control_flow = ControlFlow::Exit;
}
_ => {}
},
WindowEvent::Resized(physical_size) => {
state.resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
state.resize(**new_inner_size);
}
_ => {}
}
}
}
Event::RedrawRequested(_) => {
state.update();
state.render();
}
_ => {}
}
});
}

@ -1,441 +0,0 @@
use std::ops::Range;
use std::path::Path;
use crate::texture;
pub trait Vertex {
fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a>;
}
#[repr(C)]
#[derive(Copy, Clone, Debug)]
pub struct ModelVertex {
position: cgmath::Vector3<f32>,
tex_coords: cgmath::Vector2<f32>,
normal: cgmath::Vector3<f32>,
tangent: cgmath::Vector3<f32>,
bitangent: cgmath::Vector3<f32>,
}
unsafe impl bytemuck::Zeroable for ModelVertex {}
unsafe impl bytemuck::Pod for ModelVertex {}
impl Vertex for ModelVertex {
fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a> {
use std::mem;
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<ModelVertex>() as wgpu::BufferAddress,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &[
wgpu::VertexAttributeDescriptor {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float3,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float2,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 5]>() as wgpu::BufferAddress,
shader_location: 2,
format: wgpu::VertexFormat::Float3,
},
// Tangent and bitangent
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress,
shader_location: 3,
format: wgpu::VertexFormat::Float3,
},
wgpu::VertexAttributeDescriptor {
offset: mem::size_of::<[f32; 11]>() as wgpu::BufferAddress,
shader_location: 4,
format: wgpu::VertexFormat::Float3,
},
],
}
}
}
pub struct Material {
pub name: String,
pub diffuse_texture: texture::Texture,
pub normal_texture: texture::Texture,
pub bind_group: wgpu::BindGroup,
}
impl Material {
pub fn new(
device: &wgpu::Device,
name: &str,
diffuse_texture: texture::Texture,
normal_texture: texture::Texture,
layout: &wgpu::BindGroupLayout,
) -> Self {
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout,
bindings: &[
wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::Binding {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
wgpu::Binding {
binding: 2,
resource: wgpu::BindingResource::TextureView(&normal_texture.view),
},
wgpu::Binding {
binding: 3,
resource: wgpu::BindingResource::Sampler(&normal_texture.sampler),
},
],
label: Some(name),
});
Self {
name: String::from(name),
diffuse_texture,
normal_texture,
bind_group,
}
}
}
pub struct Mesh {
pub name: String,
pub vertex_buffer: wgpu::Buffer,
pub index_buffer: wgpu::Buffer,
pub num_elements: u32,
pub material: usize,
}
pub struct Model {
pub meshes: Vec<Mesh>,
pub materials: Vec<Material>,
}
impl Model {
pub fn load<P: AsRef<Path>>(
device: &wgpu::Device,
layout: &wgpu::BindGroupLayout,
path: P,
) -> Result<(Self, Vec<wgpu::CommandBuffer>), failure::Error> {
let (obj_models, obj_materials) = tobj::load_obj(path.as_ref())?;
// We're assuming that the texture files are stored with the obj file
let containing_folder = path.as_ref().parent().unwrap();
// Our `Texure` struct currently returns a `CommandBuffer` when it's created so we need to collect those and return them.
let mut command_buffers = Vec::new();
let mut materials = Vec::new();
for mat in obj_materials {
let diffuse_path = mat.diffuse_texture;
let (diffuse_texture, cmds) = texture::Texture::load(device, containing_folder.join(diffuse_path), false)?;
command_buffers.push(cmds);
let normal_path = match mat.unknown_param.get("map_Bump") {
Some(v) => Ok(v),
None => Err(failure::err_msg("Unable to find normal map"))
};
let (normal_texture, cmds) = texture::Texture::load(device, containing_folder.join(normal_path?), true)?;
command_buffers.push(cmds);
materials.push(Material::new(
device,
&mat.name,
diffuse_texture,
normal_texture,
layout,
));
}
let mut meshes = Vec::new();
for m in obj_models {
let mut vertices = Vec::new();
for i in 0..m.mesh.positions.len() / 3 {
vertices.push(ModelVertex {
position: [
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
].into(),
tex_coords: [
m.mesh.texcoords[i * 2],
m.mesh.texcoords[i * 2 + 1]
].into(),
normal: [
m.mesh.normals[i * 3],
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
].into(),
// We'll calculate these later
tangent: [0.0; 3].into(),
bitangent: [0.0; 3].into(),
});
}
let indices = &m.mesh.indices;
// Calculate tangents and bitangets. We're going to
// use the triangles, so we need to loop through the
// indices in chunks of 3
for c in indices.chunks(3) {
let v0 = vertices[c[0] as usize];
let v1 = vertices[c[1] as usize];
let v2 = vertices[c[2] as usize];
let pos0 = v0.position;
let pos1 = v1.position;
let pos2 = v2.position;
let uv0 = v0.tex_coords;
let uv1 = v1.tex_coords;
let uv2 = v2.tex_coords;
// Calculate the edges of the triangle
let delta_pos1 = pos1 - pos0;
let delta_pos2 = pos2 - pos0;
// This will give us a direction to calculate the
// tangent and bitangent
let delta_uv1 = uv1 - uv0;
let delta_uv2 = uv2 - uv0;
// Solving the following system of equations will
// give us the tangent and bitangent.
// delta_pos1 = delta_uv1.x * T + delta_u.y * B
// delta_pos2 = delta_uv2.x * T + delta_uv2.y * B
// Luckily, the place I found this equation provided
// the solution!
let r = 1.0 / (delta_uv1 .x * delta_uv2.y - delta_uv1.y * delta_uv2.x);
let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r;
let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * r;
// We'll use the same tangent/bitangent for each vertex in the triangle
vertices[c[0] as usize].tangent = tangent;
vertices[c[1] as usize].tangent = tangent;
vertices[c[2] as usize].tangent = tangent;
vertices[c[0] as usize].bitangent = bitangent;
vertices[c[1] as usize].bitangent = bitangent;
vertices[c[2] as usize].bitangent = bitangent;
}
let vertex_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(&vertices),
wgpu::BufferUsage::VERTEX,
);
let index_buffer = device.create_buffer_with_data(
bytemuck::cast_slice(indices),
wgpu::BufferUsage::INDEX,
);
meshes.push(Mesh {
name: m.name,
vertex_buffer,
index_buffer,
num_elements: m.mesh.indices.len() as u32,
material: m.mesh.material_id.unwrap_or(0),
});
}
Ok((Self { meshes, materials }, command_buffers))
}
}
pub trait DrawModel<'a, 'b>
where
'b: 'a,
{
fn draw_mesh(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_mesh_instanced(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model_instanced_with_material(
&mut self,
model: &'b Model,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
}
impl<'a, 'b> DrawModel<'a, 'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_mesh(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_mesh_instanced(mesh, material, 0..1, uniforms, light);
}
fn draw_mesh_instanced(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, &mesh.vertex_buffer, 0, 0);
self.set_index_buffer(&mesh.index_buffer, 0, 0);
self.set_bind_group(0, &material.bind_group, &[]);
self.set_bind_group(1, &uniforms, &[]);
self.set_bind_group(2, &light, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_model_instanced(model, 0..1, uniforms, light);
}
fn draw_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
let material = &model.materials[mesh.material];
self.draw_mesh_instanced(mesh, material, instances.clone(), uniforms, light);
}
}
fn draw_model_instanced_with_material(
&mut self,
model: &'b Model,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
self.draw_mesh_instanced(mesh, material, instances.clone(), uniforms, light);
}
}
}
pub trait DrawLight<'a, 'b>
where
'b: 'a,
{
fn draw_light_mesh(
&mut self,
mesh: &'b Mesh,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_light_mesh_instanced(
&mut self,
mesh: &'b Mesh,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) where
'b: 'a;
fn draw_light_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_light_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
}
impl<'a, 'b> DrawLight<'a, 'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_light_mesh(
&mut self,
mesh: &'b Mesh,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_light_mesh_instanced(mesh, 0..1, uniforms, light);
}
fn draw_light_mesh_instanced(
&mut self,
mesh: &'b Mesh,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, &mesh.vertex_buffer, 0, 0);
self.set_index_buffer(&mesh.index_buffer, 0, 0);
self.set_bind_group(0, uniforms, &[]);
self.set_bind_group(1, light, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_light_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_light_model_instanced(model, 0..1, uniforms, light);
}
fn draw_light_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
self.draw_light_mesh_instanced(mesh, instances.clone(), uniforms, light);
}
}
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 117 KiB

@ -1,14 +0,0 @@
# Blender MTL File: 'cube.blend'
# Material Count: 1
newmtl Material.001
Ns 323.999994
Ka 1.000000 1.000000 1.000000
Kd 0.800000 0.800000 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.450000
d 1.000000
illum 2
map_Bump cube-normal.png
map_Kd cube-diffuse.jpg

@ -1,60 +0,0 @@
#version 450
layout(location=0) in vec3 a_position;
layout(location=1) in vec2 a_tex_coords;
layout(location=2) in vec3 a_normal;
layout(location=3) in vec3 a_tangent;
layout(location=4) in vec3 a_bitangent;
layout(location=0) out vec2 v_tex_coords;
layout(location=1) out vec3 v_position; // UPDATED!
layout(location=2) out vec3 v_light_position; // NEW!
layout(location=3) out vec3 v_view_position; // NEW!
layout(set=1, binding=0)
uniform Uniforms {
vec3 u_view_position;
mat4 u_view_proj;
};
layout(set=1, binding=1)
buffer Instances {
mat4 s_models[];
};
// NEW!
layout(set=2, binding=0) uniform Light {
vec3 light_position;
vec3 light_color;
};
void main() {
v_tex_coords = a_tex_coords;
mat4 model_matrix = s_models[gl_InstanceIndex];
mat3 normal_matrix = mat3(transpose(inverse(model_matrix)));
vec3 normal = normalize(normal_matrix * a_normal);
vec3 tangent = normalize(normal_matrix * a_tangent);
vec3 bitangent = normalize(normal_matrix * a_bitangent);
// UDPATED!
mat3 tangent_matrix = transpose(mat3(
tangent,
bitangent,
normal
));
vec4 model_space = model_matrix * vec4(a_position, 1.0);
v_position = model_space.xyz;
// NEW!
// v_position = tangent_matrix * model_space.xyz;
// v_light_position = tangent_matrix * light_position;
// v_view_position = tangent_matrix * u_view_position;
v_position = model_space.xyz;
v_light_position = light_position;
v_view_position = u_view_position;
gl_Position = u_view_proj * model_space;
}

@ -1,40 +0,0 @@
#version 450
layout(location=0) in vec2 v_tex_coords;
layout(location=1) in vec3 v_position; // UPDATED!
layout(location=2) in vec3 v_light_position; // NEW!
layout(location=3) in vec3 v_view_position; // NEW!
layout(location=0) out vec4 f_color;
layout(set = 0, binding = 0) uniform texture2D t_diffuse;
layout(set = 0, binding = 1) uniform sampler s_diffuse;
layout(set = 0, binding = 2) uniform texture2D t_normal;
layout(set = 0, binding = 3) uniform sampler s_normal;
layout(set = 2, binding = 0) uniform Light {
vec3 light_position;
vec3 light_color;
};
void main() {
vec4 object_color = texture(sampler2D(t_diffuse, s_diffuse), v_tex_coords);
vec4 object_normal = texture(sampler2D(t_normal, s_normal), v_tex_coords);
float ambient_strength = 0.1;
vec3 ambient_color = light_color * ambient_strength;
vec3 normal = normalize(object_normal.rgb * 2.0 - 1.0); // UPDATED!
vec3 light_dir = normalize(v_light_position - v_position); // UPDATED!
float diffuse_strength = max(dot(normal, light_dir), 0.0);
vec3 diffuse_color = light_color * diffuse_strength;
vec3 view_dir = normalize(v_view_position - v_position); // UPDATED!
vec3 half_dir = normalize(view_dir + light_dir);
float specular_strength = pow(max(dot(normal, half_dir), 0.0), 32);
vec3 specular_color = specular_strength * light_color;
vec3 result = (ambient_color + diffuse_color + specular_color) * object_color.xyz;
f_color = vec4(result, object_color.a);
}

@ -1,57 +0,0 @@
#version 450
layout(location=0) in vec3 a_position;
layout(location=1) in vec2 a_tex_coords;
layout(location=2) in vec3 a_normal;
layout(location=3) in vec3 a_tangent;
layout(location=4) in vec3 a_bitangent;
layout(location=0) out vec2 v_tex_coords;
layout(location=1) out vec3 v_position; // UPDATED!
layout(location=2) out vec3 v_light_position; // NEW!
layout(location=3) out vec3 v_view_position; // NEW!
layout(set=1, binding=0)
uniform Uniforms {
vec3 u_view_position;
mat4 u_view_proj;
};
layout(set=1, binding=1)
buffer Instances {
mat4 s_models[];
};
// NEW!
layout(set=2, binding=0) uniform Light {
vec3 light_position;
vec3 light_color;
};
void main() {
v_tex_coords = a_tex_coords;
mat4 model_matrix = s_models[gl_InstanceIndex];
mat3 normal_matrix = mat3(transpose(inverse(model_matrix)));
vec3 normal = normalize(normal_matrix * a_normal);
vec3 tangent = normalize(normal_matrix * a_tangent);
vec3 bitangent = normalize(normal_matrix * a_bitangent);
// UDPATED!
mat3 tangent_matrix = transpose(mat3(
tangent,
bitangent,
normal
));
vec4 model_space = model_matrix * vec4(a_position, 1.0);
v_position = model_space.xyz;
// NEW!
v_position = tangent_matrix * model_space.xyz;
v_light_position = tangent_matrix * light_position;
v_view_position = tangent_matrix * u_view_position;
gl_Position = u_view_proj * model_space;
}

@ -1,145 +0,0 @@
use image::GenericImageView;
use std::path::Path;
pub struct Texture {
pub texture: wgpu::Texture,
pub view: wgpu::TextureView,
pub sampler: wgpu::Sampler,
}
impl Texture {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub fn load<P: AsRef<Path>>(
device: &wgpu::Device,
path: P,
is_normal_map: bool,
) -> Result<(Self, wgpu::CommandBuffer), failure::Error> {
// Needed to appease the borrow checker
let path_copy = path.as_ref().to_path_buf();
let label = path_copy.to_str();
let img = image::open(path)?;
Self::from_image(device, &img, label, is_normal_map)
}
pub fn create_depth_texture(device: &wgpu::Device, sc_desc: &wgpu::SwapChainDescriptor, label: &str) -> Self {
let size = wgpu::Extent3d {
width: sc_desc.width,
height: sc_desc.height,
depth: 1,
};
let desc = wgpu::TextureDescriptor {
label: Some(label),
size,
array_layer_count: 1,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT
| wgpu::TextureUsage::SAMPLED
| wgpu::TextureUsage::COPY_SRC,
};
let texture = device.create_texture(&desc);
let view = texture.create_default_view();
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
compare: wgpu::CompareFunction::LessEqual,
});
Self { texture, view, sampler }
}
#[allow(dead_code)]
pub fn from_bytes(
device: &wgpu::Device,
bytes: &[u8],
label: &str,
is_normal_map: bool,
) -> Result<(Self, wgpu::CommandBuffer), failure::Error> {
let img = image::load_from_memory(bytes)?;
Self::from_image(device, &img, Some(label), is_normal_map)
}
pub fn from_image(
device: &wgpu::Device,
img: &image::DynamicImage,
label: Option<&str>,
is_normal_map: bool,
) -> Result<(Self, wgpu::CommandBuffer), failure::Error> {
let rgba = img.to_rgba();
let dimensions = img.dimensions();
let size = wgpu::Extent3d {
width: dimensions.0,
height: dimensions.1,
depth: 1,
};
let texture = device.create_texture(&wgpu::TextureDescriptor {
label,
size,
array_layer_count: 1,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: if is_normal_map {
wgpu::TextureFormat::Rgba8Unorm
} else {
wgpu::TextureFormat::Rgba8UnormSrgb
},
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::COPY_DST,
});
let buffer = device.create_buffer_with_data(
&rgba,
wgpu::BufferUsage::COPY_SRC,
);
let mut encoder = device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("texture_buffer_copy_encoder"),
});
encoder.copy_buffer_to_texture(
wgpu::BufferCopyView {
buffer: &buffer,
offset: 0,
bytes_per_row: 4 * dimensions.0,
rows_per_image: dimensions.1,
},
wgpu::TextureCopyView {
texture: &texture,
mip_level: 0,
array_layer: 0,
origin: wgpu::Origin3d::ZERO,
},
size,
);
let cmd_buffer = encoder.finish();
let view = texture.create_default_view();
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
compare: wgpu::CompareFunction::Always,
});
Ok((Self { texture, view, sampler }, cmd_buffer))
}
}

@ -1,45 +0,0 @@
#version 450
layout(location=0) in vec2 v_tex_coords;
layout(location=1) in vec3 v_position; // UPDATED!
layout(location=2) in mat3 v_tangent_matrix; // NEW!
layout(location=0) out vec4 f_color;
layout(set = 0, binding = 0) uniform texture2D t_diffuse;
layout(set = 0, binding = 1) uniform sampler s_diffuse;
layout(set = 0, binding = 2) uniform texture2D t_normal;
layout(set = 0, binding = 3) uniform sampler s_normal;
layout(set=1, binding=0)
uniform Uniforms {
vec3 u_view_position;
mat4 u_view_proj; // unused
};
layout(set = 2, binding = 0) uniform Light {
vec3 light_position;
vec3 light_color;
};
void main() {
vec4 object_color = texture(sampler2D(t_diffuse, s_diffuse), v_tex_coords);
vec4 object_normal = texture(sampler2D(t_normal, s_normal), v_tex_coords);
float ambient_strength = 0.1;
vec3 ambient_color = light_color * ambient_strength;
vec3 normal = normalize(v_tangent_matrix * (object_normal.rgb * 2.0 - 1.0));
vec3 light_dir = normalize(light_position - v_position);
float diffuse_strength = max(dot(normal, light_dir), 0.0);
vec3 diffuse_color = light_color * diffuse_strength;
vec3 view_dir = normalize(u_view_position - v_position);
vec3 half_dir = normalize(view_dir + light_dir);
float specular_strength = pow(max(dot(normal, half_dir), 0.0), 32);
vec3 specular_color = specular_strength * light_color;
vec3 result = (ambient_color + diffuse_color + specular_color) * object_color.xyz;
f_color = vec4(result, object_color.a);
}

@ -1,44 +0,0 @@
#version 450
layout(location=0) in vec3 a_position;
layout(location=1) in vec2 a_tex_coords;
layout(location=2) in vec3 a_normal;
// NEW!
layout(location=3) in vec3 a_tangent;
layout(location=4) in vec3 a_bitangent;
layout(location=0) out vec2 v_tex_coords;
layout(location=1) out vec3 v_position; // UPDATED!
layout(location=2) out mat3 v_tangent_matrix; // NEW!
layout(set=1, binding=0)
uniform Uniforms {
vec3 u_view_position;
mat4 u_view_proj;
};
layout(set=1, binding=1)
buffer Instances {
mat4 s_models[];
};
void main() {
v_tex_coords = a_tex_coords;
mat4 model_matrix = s_models[gl_InstanceIndex];
mat3 normal_matrix = mat3(transpose(inverse(model_matrix)));
vec3 normal = normalize(normal_matrix * a_normal);
vec3 tangent = normalize(normal_matrix * a_tangent);
vec3 bitangent = normalize(normal_matrix * a_bitangent);
v_tangent_matrix = mat3(
tangent,
bitangent,
normal
);
vec4 model_space = model_matrix * vec4(a_position, 1.0);
v_position = model_space.xyz;
gl_Position = u_view_proj * model_space;
}

@ -38,6 +38,7 @@ module.exports = {
children: [
'/intermediate/tutorial10-lighting/',
'/intermediate/tutorial11-normals/',
'/intermediate/tutorial12-camera/',
],
},
{

@ -1 +1 @@
Subproject commit 76afdf3da1c9c73d38d0d0235dd94cde8545553f
Subproject commit 037a594e0406e14c88976ac1c486234b81d6a0b5

@ -105,7 +105,7 @@ On thing to note: `cgmath` currently returns a right-handed projection matrix fr
You can tell the difference between a right-handed coordinate system and a left-handed one by using your hands. Point your thumb to the right. This is the x-axis. Point your pointer finger up. This is the y-axis. Extend your middle finger. This is the z-axis. On your right hand your middle finger should be pointing towards you. On your left hand it should be pointing away.
![left_right_hand.gif]()
![./left_right_hand.gif](./left_right_hand.gif)
# The Camera Controller
@ -406,4 +406,6 @@ fn main() {
With that we should be able to move our camera wherever we want.
![screenshot.png]()
![./screenshot.png](./screenshot.png)
<AutoGithubLink/>
Loading…
Cancel
Save