langchain/docs/use_cases/chatbots.md
Harrison Chase 985496f4be
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:

- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.

There is also a full reference section, as well as extra resources
(glossary, gallery, etc)

Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 08:24:09 -08:00

921 B

Chatbots

Since language models are good at producing text, that makes them ideal for creating chatbots. Aside from the base prompts/LLMs, an important concept to know for Chatbots is memory. Most chat based applications rely on remembering what happened in previous interactions, which is memory is designed to help with.

The following resources exist:

  • ChatGPT Clone: A notebook walking through how to recreate a ChatGPT-like experience with LangChain.
  • Conversation Memory: A notebook walking through how to use different types of conversational memory.

Additional related resources include: