langchain/libs/partners/google-genai/README.md

78 lines
1.9 KiB
Markdown

# langchain-google-genai
This package contains the LangChain integrations for Gemini through their generative-ai SDK.
## Installation
```bash
pip install -U langchain-google-genai
```
### Image utilities
To use image utility methods, like loading images from GCS urls, install with extras group 'images':
```bash
pip install -e "langchain-google-genai[images]"
```
## Chat Models
This package contains the `ChatGoogleGenerativeAI` class, which is the recommended way to interface with the Google Gemini series of models.
To use, install the requirements, and configure your environment.
```bash
export GOOGLE_API_KEY=your-api-key
```
Then initialize
```python
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
```
#### Multimodal inputs
Gemini vision model supports image inputs when providing a single chat message. Example:
```
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# example
message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
}, # You can optionally provide text parts
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
]
)
llm.invoke([message])
```
The value of `image_url` can be any of the following:
- A public image URL
- An accessible gcs file (e.g., "gcs://path/to/file.png")
- A local file path
- A base64 encoded image (e.g., ``)
- A PIL image
## Embeddings
This package also adds support for google's embeddings models.
```
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")
```