mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
27441555d0
Description: Added support for AI21 Labs model - Contextual Answers Dependencies: ai21, ai21-tokenizer Twitter handle: https://github.com/AI21Labs --------- Co-authored-by: Asaf Gardin <asafg@ai21.com> Co-authored-by: Erick Friis <erick@langchain.dev>
2.5 KiB
2.5 KiB
langchain-ai21
This package contains the LangChain integrations for AI21 through their AI21 SDK.
Installation and Setup
- Install the AI21 partner package
pip install langchain-ai21
- Get an AI21 api key and set it as an environment variable (
AI21_API_KEY
)
Chat Models
This package contains the ChatAI21
class, which is the recommended way to interface with AI21 Chat models.
To use, install the requirements, and configure your environment.
export AI21_API_KEY=your-api-key
Then initialize
from langchain_core.messages import HumanMessage
from langchain_ai21.chat_models import ChatAI21
chat = ChatAI21(model="j2-ultra")
messages = [HumanMessage(content="Hello from AI21")]
chat.invoke(messages)
LLMs
You can use AI21's generative AI models as Langchain LLMs:
from langchain.prompts import PromptTemplate
from langchain_ai21 import AI21LLM
llm = AI21LLM(model="j2-ultra")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
chain = prompt | llm
question = "Which scientist discovered relativity?"
print(chain.invoke({"question": question}))
Embeddings
You can use AI21's embeddings models as:
Query
from langchain_ai21 import AI21Embeddings
embeddings = AI21Embeddings()
embeddings.embed_query("Hello! This is some query")
Document
from langchain_ai21 import AI21Embeddings
embeddings = AI21Embeddings()
embeddings.embed_documents(["Hello! This is document 1", "And this is document 2!"])
Task Specific Models
Contextual Answers
You can use AI21's contextual answers model to receives text or document, serving as a context, and a question and returns an answer based entirely on this context.
This means that if the answer to your question is not in the document, the model will indicate it (instead of providing a false answer)
from langchain_ai21 import AI21ContextualAnswers
tsm = AI21ContextualAnswers()
response = tsm.invoke(input={"context": "Your context", "question": "Your question"})
You can also use it with chains and output parsers and vector DBs:
from langchain_ai21 import AI21ContextualAnswers
from langchain_core.output_parsers import StrOutputParser
tsm = AI21ContextualAnswers()
chain = tsm | StrOutputParser()
response = chain.invoke(
{"context": "Your context", "question": "Your question"},
)