mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
175 lines
5.5 KiB
Plaintext
175 lines
5.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2da95378",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Exact Match\n",
|
|
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/guides/evaluation/string/exact_match.ipynb)\n",
|
|
"\n",
|
|
"Probably the simplest ways to evaluate an LLM or runnable's string output against a reference label is by a simple string equivalence.\n",
|
|
"\n",
|
|
"This can be accessed using the `exact_match` evaluator."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "0de44d01-1fea-4701-b941-c4fb74e521e7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.evaluation import ExactMatchStringEvaluator\n",
|
|
"\n",
|
|
"evaluator = ExactMatchStringEvaluator()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fe3baf5f-bfee-4745-bcd6-1a9b422ed46f",
|
|
"metadata": {},
|
|
"source": [
|
|
"Alternatively via the loader:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f6790c46",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.evaluation import load_evaluator\n",
|
|
"\n",
|
|
"evaluator = load_evaluator(\"exact_match\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "49ad9139",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0}"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"evaluator.evaluate_strings(\n",
|
|
" prediction=\"1 LLM.\",\n",
|
|
" reference=\"2 llm\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "1f5e82a3-247e-45a8-85fc-6af53bf7ff82",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 0}"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"evaluator.evaluate_strings(\n",
|
|
" prediction=\"LangChain\",\n",
|
|
" reference=\"langchain\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b8ed1f12-09a6-4e90-a69d-c8df525ff293",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Configure the ExactMatchStringEvaluator\n",
|
|
"\n",
|
|
"You can relax the \"exactness\" when comparing strings."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "0c079864-0175-4d06-9d3f-a0e51dd3977c",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"evaluator = ExactMatchStringEvaluator(\n",
|
|
" ignore_case=True,\n",
|
|
" ignore_numbers=True,\n",
|
|
" ignore_punctuation=True,\n",
|
|
")\n",
|
|
"\n",
|
|
"# Alternatively\n",
|
|
"# evaluator = load_evaluator(\"exact_match\", ignore_case=True, ignore_numbers=True, ignore_punctuation=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "a8dfb900-14f3-4a1f-8736-dd1d86a1264c",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'score': 1}"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"evaluator.evaluate_strings(\n",
|
|
" prediction=\"1 LLM.\",\n",
|
|
" reference=\"2 llm\",\n",
|
|
")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
} |