{ "cells": [ { "cell_type": "markdown", "id": "2da95378", "metadata": {}, "source": [ "# Exact Match\n", "[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/guides/evaluation/string/exact_match.ipynb)\n", "\n", "Probably the simplest ways to evaluate an LLM or runnable's string output against a reference label is by a simple string equivalence.\n", "\n", "This can be accessed using the `exact_match` evaluator." ] }, { "cell_type": "code", "execution_count": 1, "id": "0de44d01-1fea-4701-b941-c4fb74e521e7", "metadata": {}, "outputs": [], "source": [ "from langchain.evaluation import ExactMatchStringEvaluator\n", "\n", "evaluator = ExactMatchStringEvaluator()" ] }, { "cell_type": "markdown", "id": "fe3baf5f-bfee-4745-bcd6-1a9b422ed46f", "metadata": {}, "source": [ "Alternatively via the loader:" ] }, { "cell_type": "code", "execution_count": 2, "id": "f6790c46", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.evaluation import load_evaluator\n", "\n", "evaluator = load_evaluator(\"exact_match\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "49ad9139", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "{'score': 0}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluator.evaluate_strings(\n", " prediction=\"1 LLM.\",\n", " reference=\"2 llm\",\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "id": "1f5e82a3-247e-45a8-85fc-6af53bf7ff82", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'score': 0}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluator.evaluate_strings(\n", " prediction=\"LangChain\",\n", " reference=\"langchain\",\n", ")" ] }, { "cell_type": "markdown", "id": "b8ed1f12-09a6-4e90-a69d-c8df525ff293", "metadata": {}, "source": [ "## Configure the ExactMatchStringEvaluator\n", "\n", "You can relax the \"exactness\" when comparing strings." ] }, { "cell_type": "code", "execution_count": 5, "id": "0c079864-0175-4d06-9d3f-a0e51dd3977c", "metadata": { "tags": [] }, "outputs": [], "source": [ "evaluator = ExactMatchStringEvaluator(\n", " ignore_case=True,\n", " ignore_numbers=True,\n", " ignore_punctuation=True,\n", ")\n", "\n", "# Alternatively\n", "# evaluator = load_evaluator(\"exact_match\", ignore_case=True, ignore_numbers=True, ignore_punctuation=True)" ] }, { "cell_type": "code", "execution_count": 6, "id": "a8dfb900-14f3-4a1f-8736-dd1d86a1264c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'score': 1}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluator.evaluate_strings(\n", " prediction=\"1 LLM.\",\n", " reference=\"2 llm\",\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }