mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
163ef35dd1
Updated titles into a consistent format. Fixed links to the diagrams. Fixed typos. Note: The Templates menu in the navbar is now sorted by the file names. I'll try sorting the navbar menus by the page titles, not the page file names.
117 lines
3.8 KiB
Markdown
117 lines
3.8 KiB
Markdown
# RAG - Chroma multi-modal
|
|
|
|
Multi-modal LLMs enable visual assistants that can perform question-answering about images.
|
|
|
|
This template create a visual assistant for slide decks, which often contain visuals such as graphs or figures.
|
|
|
|
It uses `OpenCLIP` embeddings to embed all the slide images and stores them in `Chroma`.
|
|
|
|
Given a question, relevant slides are retrieved and passed to `GPT-4V` for answer synthesis.
|
|
|
|
![Diagram illustrating the workflow of a multi-modal LLM visual assistant using OpenCLIP embeddings and GPT-4V for question-answering based on slide deck images.](https://github.com/langchain-ai/langchain/assets/122662504/b3bc8406-48ae-4707-9edf-d0b3a511b200) "Workflow Diagram for Multi-modal LLM Visual Assistant"
|
|
|
|
## Input
|
|
|
|
Supply a slide deck as pdf in the `/docs` directory.
|
|
|
|
By default, this template has a slide deck about Q3 earnings from DataDog, a public technology company.
|
|
|
|
Example questions to ask can be:
|
|
```
|
|
How many customers does Datadog have?
|
|
What is Datadog platform % Y/Y growth in FY20, FY21, and FY22?
|
|
```
|
|
|
|
To create an index of the slide deck, run:
|
|
```
|
|
poetry install
|
|
python ingest.py
|
|
```
|
|
|
|
## Storage
|
|
|
|
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings to embed the images.
|
|
|
|
You can select different embedding model options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
|
|
|
|
The first time you run the app, it will automatically download the multimodal embedding model.
|
|
|
|
By default, LangChain will use an embedding model with moderate performance but lower memory requirements, `ViT-H-14`.
|
|
|
|
You can choose alternative `OpenCLIPEmbeddings` models in `rag_chroma_multi_modal/ingest.py`:
|
|
```
|
|
vectorstore_mmembd = Chroma(
|
|
collection_name="multi-modal-rag",
|
|
persist_directory=str(re_vectorstore_path),
|
|
embedding_function=OpenCLIPEmbeddings(
|
|
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
|
|
),
|
|
)
|
|
```
|
|
|
|
## LLM
|
|
|
|
The app will retrieve images based on similarity between the text input and the image, which are both mapped to multi-modal embedding space. It will then pass the images to GPT-4V.
|
|
|
|
## Environment Setup
|
|
|
|
Set the `OPENAI_API_KEY` environment variable to access the OpenAI GPT-4V.
|
|
|
|
## Usage
|
|
|
|
To use this package, you should first have the LangChain CLI installed:
|
|
|
|
```shell
|
|
pip install -U langchain-cli
|
|
```
|
|
|
|
To create a new LangChain project and install this as the only package, you can do:
|
|
|
|
```shell
|
|
langchain app new my-app --package rag-chroma-multi-modal
|
|
```
|
|
|
|
If you want to add this to an existing project, you can just run:
|
|
|
|
```shell
|
|
langchain app add rag-chroma-multi-modal
|
|
```
|
|
|
|
And add the following code to your `server.py` file:
|
|
```python
|
|
from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain
|
|
|
|
add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")
|
|
```
|
|
|
|
(Optional) Let's now configure LangSmith.
|
|
LangSmith will help us trace, monitor and debug LangChain applications.
|
|
You can sign up for LangSmith [here](https://smith.langchain.com/).
|
|
If you don't have access, you can skip this section
|
|
|
|
```shell
|
|
export LANGCHAIN_TRACING_V2=true
|
|
export LANGCHAIN_API_KEY=<your-api-key>
|
|
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
|
```
|
|
|
|
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
|
|
|
```shell
|
|
langchain serve
|
|
```
|
|
|
|
This will start the FastAPI app with a server is running locally at
|
|
[http://localhost:8000](http://localhost:8000)
|
|
|
|
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
|
We can access the playground at [http://127.0.0.1:8000/rag-chroma-multi-modal/playground](http://127.0.0.1:8000/rag-chroma-multi-modal/playground)
|
|
|
|
We can access the template from code with:
|
|
|
|
```python
|
|
from langserve.client import RemoteRunnable
|
|
|
|
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-multi-modal")
|
|
```
|