mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
178 lines
4.4 KiB
Plaintext
178 lines
4.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "9597802c",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Anyscale\n",
|
|
"\n",
|
|
"[Anyscale](https://www.anyscale.com/) is a fully-managed [Ray](https://www.ray.io/) platform, on which you can build, deploy, and manage scalable AI and Python applications\n",
|
|
"\n",
|
|
"This example goes over how to use LangChain to interact with `Anyscale` [service](https://docs.anyscale.com/productionize/services-v2/get-started). \n",
|
|
"\n",
|
|
"It will send the requests to Anyscale Service endpoint, which is concatenate `ANYSCALE_SERVICE_URL` and `ANYSCALE_SERVICE_ROUTE`, with a token defined in `ANYSCALE_SERVICE_TOKEN`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"os.environ[\"ANYSCALE_SERVICE_URL\"] = ANYSCALE_SERVICE_URL\n",
|
|
"os.environ[\"ANYSCALE_SERVICE_ROUTE\"] = ANYSCALE_SERVICE_ROUTE\n",
|
|
"os.environ[\"ANYSCALE_SERVICE_TOKEN\"] = ANYSCALE_SERVICE_TOKEN"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6fb585dd",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.llms import Anyscale\n",
|
|
"from langchain.prompts import PromptTemplate\nfrom langchain.chains import LLMChain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "035dea0f",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3f3458d9",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = Anyscale()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a641dbd9",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9f844993",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"question = \"When was George Washington president?\"\n",
|
|
"\n",
|
|
"llm_chain.run(question)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "42f05b34-1a44-4cbd-8342-35c1572b6765",
|
|
"metadata": {},
|
|
"source": [
|
|
"With Ray, we can distribute the queries without asyncrhonized implementation. This not only applies to Anyscale LLM model, but to any other Langchain LLM models which do not have `_acall` or `_agenerate` implemented"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "08b23adc-2b29-4c38-b538-47b3c3d840a6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"prompt_list = [\n",
|
|
" \"When was George Washington president?\",\n",
|
|
" \"Explain to me the difference between nuclear fission and fusion.\",\n",
|
|
" \"Give me a list of 5 science fiction books I should read next.\",\n",
|
|
" \"Explain the difference between Spark and Ray.\",\n",
|
|
" \"Suggest some fun holiday ideas.\",\n",
|
|
" \"Tell a joke.\",\n",
|
|
" \"What is 2+2?\",\n",
|
|
" \"Explain what is machine learning like I am five years old.\",\n",
|
|
" \"Explain what is artifical intelligence.\",\n",
|
|
"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2b45abb9-b764-497d-af99-0df1d4e335e0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import ray\n",
|
|
"\n",
|
|
"\n",
|
|
"@ray.remote\n",
|
|
"def send_query(llm, prompt):\n",
|
|
" resp = llm(prompt)\n",
|
|
" return resp\n",
|
|
"\n",
|
|
"\n",
|
|
"futures = [send_query.remote(llm, prompt) for prompt in prompt_list]\n",
|
|
"results = ray.get(futures)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.8"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|