{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "9597802c", "metadata": {}, "source": [ "# Anyscale\n", "\n", "[Anyscale](https://www.anyscale.com/) is a fully-managed [Ray](https://www.ray.io/) platform, on which you can build, deploy, and manage scalable AI and Python applications\n", "\n", "This example goes over how to use LangChain to interact with `Anyscale` [service](https://docs.anyscale.com/productionize/services-v2/get-started). \n", "\n", "It will send the requests to Anyscale Service endpoint, which is concatenate `ANYSCALE_SERVICE_URL` and `ANYSCALE_SERVICE_ROUTE`, with a token defined in `ANYSCALE_SERVICE_TOKEN`" ] }, { "cell_type": "code", "execution_count": null, "id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2", "metadata": { "tags": [] }, "outputs": [], "source": [ "import os\n", "\n", "os.environ[\"ANYSCALE_SERVICE_URL\"] = ANYSCALE_SERVICE_URL\n", "os.environ[\"ANYSCALE_SERVICE_ROUTE\"] = ANYSCALE_SERVICE_ROUTE\n", "os.environ[\"ANYSCALE_SERVICE_TOKEN\"] = ANYSCALE_SERVICE_TOKEN" ] }, { "cell_type": "code", "execution_count": null, "id": "6fb585dd", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.llms import Anyscale\n", "from langchain.prompts import PromptTemplate\nfrom langchain.chains import LLMChain" ] }, { "cell_type": "code", "execution_count": null, "id": "035dea0f", "metadata": { "tags": [] }, "outputs": [], "source": [ "template = \"\"\"Question: {question}\n", "\n", "Answer: Let's think step by step.\"\"\"\n", "\n", "prompt = PromptTemplate(template=template, input_variables=[\"question\"])" ] }, { "cell_type": "code", "execution_count": null, "id": "3f3458d9", "metadata": { "tags": [] }, "outputs": [], "source": [ "llm = Anyscale()" ] }, { "cell_type": "code", "execution_count": null, "id": "a641dbd9", "metadata": { "tags": [] }, "outputs": [], "source": [ "llm_chain = LLMChain(prompt=prompt, llm=llm)" ] }, { "cell_type": "code", "execution_count": null, "id": "9f844993", "metadata": { "tags": [] }, "outputs": [], "source": [ "question = \"When was George Washington president?\"\n", "\n", "llm_chain.run(question)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "42f05b34-1a44-4cbd-8342-35c1572b6765", "metadata": {}, "source": [ "With Ray, we can distribute the queries without asyncrhonized implementation. This not only applies to Anyscale LLM model, but to any other Langchain LLM models which do not have `_acall` or `_agenerate` implemented" ] }, { "cell_type": "code", "execution_count": null, "id": "08b23adc-2b29-4c38-b538-47b3c3d840a6", "metadata": {}, "outputs": [], "source": [ "prompt_list = [\n", " \"When was George Washington president?\",\n", " \"Explain to me the difference between nuclear fission and fusion.\",\n", " \"Give me a list of 5 science fiction books I should read next.\",\n", " \"Explain the difference between Spark and Ray.\",\n", " \"Suggest some fun holiday ideas.\",\n", " \"Tell a joke.\",\n", " \"What is 2+2?\",\n", " \"Explain what is machine learning like I am five years old.\",\n", " \"Explain what is artifical intelligence.\",\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "2b45abb9-b764-497d-af99-0df1d4e335e0", "metadata": {}, "outputs": [], "source": [ "import ray\n", "\n", "\n", "@ray.remote\n", "def send_query(llm, prompt):\n", " resp = llm(prompt)\n", " return resp\n", "\n", "\n", "futures = [send_query.remote(llm, prompt) for prompt in prompt_list]\n", "results = ray.get(futures)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "vscode": { "interpreter": { "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03" } } }, "nbformat": 4, "nbformat_minor": 5 }