langchain/docs/extras/integrations/callbacks/llmonitor.md
Hugues 3e5a143625
Enhancements and bug fixes for LLMonitorCallbackHandler (#10297)
Hi @baskaryan,

I've made updates to LLMonitorCallbackHandler to address a few bugs
reported by users
These changes don't alter the fundamental behavior of the callback
handler.

Thanks you!

---------

Co-authored-by: vincelwt <vince@lyser.io>
2023-09-08 15:56:42 -07:00

106 lines
3.2 KiB
Markdown

# LLMonitor
[LLMonitor](https://llmonitor.com?utm_source=langchain&utm_medium=py&utm_campaign=docs) is an open-source observability platform that provides cost and usage analytics, user tracking, tracing and evaluation tools.
<video controls width='100%' >
<source src='https://llmonitor.com/videos/demo-annotated.mp4'/>
</video>
## Setup
Create an account on [llmonitor.com](https://llmonitor.com?utm_source=langchain&utm_medium=py&utm_campaign=docs), then copy your new app's `tracking id`.
Once you have it, set it as an environment variable by running:
```bash
export LLMONITOR_APP_ID="..."
```
If you'd prefer not to set an environment variable, you can pass the key directly when initializing the callback handler:
```python
from langchain.callbacks import LLMonitorCallbackHandler
handler = LLMonitorCallbackHandler(app_id="...")
```
## Usage with LLM/Chat models
```python
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks import LLMonitorCallbackHandler
handler = LLMonitorCallbackHandler()
llm = OpenAI(
callbacks=[handler],
)
chat = ChatOpenAI(
callbacks=[handler],
metadata={"userId": "123"}, # you can assign user ids to models in the metadata
)
```
## Usage with chains and agents
Make sure to pass the callback handler to the `run` method so that all related chains and llm calls are correctly tracked.
It is also recommended to pass `agent_name` in the metadata to be able to distinguish between agents in the dashboard.
Example:
```python
from langchain.chat_models import ChatOpenAI
from langchain.schema import SystemMessage, HumanMessage
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor, tool
from langchain.callbacks import LLMonitorCallbackHandler
llm = ChatOpenAI(temperature=0)
handler = LLMonitorCallbackHandler()
@tool
def get_word_length(word: str) -> int:
"""Returns the length of a word."""
return len(word)
tools = [get_word_length]
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=SystemMessage(
content="You are very powerful assistant, but bad at calculating lengths of words."
)
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt, verbose=True)
agent_executor = AgentExecutor(
agent=agent, tools=tools, verbose=True, metadata={"agent_name": "WordCount"} # <- recommended, assign a custom name
)
agent_executor.run("how many letters in the word educa?", callbacks=[handler])
```
Another example:
```python
from langchain.agents import load_tools, initialize_agent, AgentType
from langchain.llms import OpenAI
from langchain.callbacks import LLMonitorCallbackHandler
handler = LLMonitorCallbackHandler()
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, metadata={ "agent_name": "GirlfriendAgeFinder" }) # <- recommended, assign a custom name
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?",
callbacks=[handler],
)
```
## Support
For any question or issue with integration you can reach out to the LLMonitor team on [Discord](http://discord.com/invite/8PafSG58kK) or via [email](mailto:vince@llmonitor.com).