mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
9becdeaadf
Add LLM wrappers and examples for Banana, Writer, Modal, Stochastic AI Added rigid json format for Banana and Modal
2.2 KiB
2.2 KiB
Banana
This page covers how to use the Banana ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
Installation and Setup
- Install with
pip3 install banana-dev
- Get an CerebriumAI api key and set it as an environment variable (
BANANA_API_KEY
)
Define your Banana Template
If you want to use an available language model template you can find one here. This template uses the Palmyra-Base model by Writer. You can check out an example Banana repository here.
Build the Banana app
You must include a output in the result. There is a rigid response structure.
# Return the results as a dictionary
result = {'output': result}
An example inference function would be:
def inference(model_inputs:dict) -> dict:
global model
global tokenizer
# Parse out your arguments
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}
# Run the model
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
# Return the results as a dictionary
result = {'output': result}
return result
You can find a full example of a Banana app here.
Wrappers
LLM
There exists an Banana LLM wrapper, which you can access with
from langchain.llms import Banana
You need to provide a model key located in the dashboard:
llm = Banana(model_key="YOUR_MODEL_KEY")