mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
8ee56b9a5b
**Description:** Add support for Meilisearch vector store. Resolve #7603 - No external dependencies added - A notebook has been added @rlancemartin https://twitter.com/meilisearch Co-authored-by: Bagatur <baskaryan@gmail.com>
307 lines
9.4 KiB
Plaintext
307 lines
9.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Meilisearch\n",
|
|
"\n",
|
|
"> [Meilisearch](https://meilisearch.com) is an open-source, lightning-fast, and hyper relevant search engine. It comes with great defaults to help developers build snappy search experiences. \n",
|
|
">\n",
|
|
"> You can [self-host Meilisearch](https://www.meilisearch.com/docs/learn/getting_started/installation#local-installation) or run on [Meilisearch Cloud](https://www.meilisearch.com/pricing).\n",
|
|
"\n",
|
|
"Meilisearch v1.3 supports vector search. This page guides you through integrating Meilisearch as a vector store and using it to perform vector search."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup\n",
|
|
"\n",
|
|
"### Launching a Meilisearch instance\n",
|
|
"\n",
|
|
"You will need a running Meilisearch instance to use as your vector store. You can run [Meilisearch in local](https://www.meilisearch.com/docs/learn/getting_started/installation#local-installation) or create a [Meilisearch Cloud](https://cloud.meilisearch.com/) account.\n",
|
|
"\n",
|
|
"As of Meilisearch v1.3, vector storage is an experimental feature. After launching your Meilisearch instance, you need to **enable vector storage**. For self-hosted Meilisearch, read the docs on [enabling experimental features](https://www.meilisearch.com/docs/learn/experimental/vector-search). On **Meilisearch Cloud**, enable _Vector Store_ via your project _Settings_ page.\n",
|
|
"\n",
|
|
"You should now have a running Meilisearch instance with vector storage enabled. 🎉\n",
|
|
"\n",
|
|
"### Credentials\n",
|
|
"\n",
|
|
"To interact with your Meilisearch instance, the Meilisearch SDK needs a host (URL of your instance) and an API key.\n",
|
|
"\n",
|
|
"**Host**\n",
|
|
"\n",
|
|
"- In **local**, the default host is `localhost:7700`\n",
|
|
"- On **Meilisearch Cloud**, find the host in your project _Settings_ page\n",
|
|
"\n",
|
|
"**API keys**\n",
|
|
"\n",
|
|
"Meilisearch instance provides you with three API keys out of the box: \n",
|
|
"- A `MASTER KEY` — it should only be used to create your Meilisearch instance\n",
|
|
"- A `ADMIN KEY` — use it only server-side to update your database and its settings\n",
|
|
"- A `SEARCH KEY` — a key that you can safely share in front-end applications\n",
|
|
"\n",
|
|
"You can create [additional API keys](https://www.meilisearch.com/docs/learn/security/master_api_keys) as needed."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Installing dependencies\n",
|
|
"\n",
|
|
"This guide uses the [Meilisearch Python SDK](https://github.com/meilisearch/meilisearch-python). You can install it by running:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install meilisearch"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"For more information, refer to the [Meilisearch Python SDK documentation](https://meilisearch.github.io/meilisearch-python/)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Examples\n",
|
|
"\n",
|
|
"There are multiple ways to initialize the Meilisearch vector store: providing a Meilisearch client or the _URL_ and _API key_ as needed. In our examples, the credentials will be loaded from the environment.\n",
|
|
"\n",
|
|
"You can make environment variables available in your Notebook environment by using `os` and `getpass`. You can use this technique for all the following examples."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import getpass\n",
|
|
"\n",
|
|
"os.environ[\"MEILI_HTTP_ADDR\"] = getpass.getpass(\"Meilisearch HTTP address and port:\")\n",
|
|
"os.environ[\"MEILI_MASTER_KEY\"] = getpass.getpass(\"Meilisearch API Key:\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We want to use OpenAIEmbeddings so we have to get the OpenAI API Key."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Adding text and embeddings\n",
|
|
"\n",
|
|
"This example adds text to the Meilisearch vector database without having to initialize a Meilisearch vector store."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.vectorstores import Meilisearch\n",
|
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
|
"\n",
|
|
"embeddings = OpenAIEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open(\"../../../state_of_the_union.txt\") as f:\n",
|
|
" state_of_the_union = f.read()\n",
|
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
|
"texts = text_splitter.split_text(state_of_the_union)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Use Meilisearch vector store to store texts & associated embeddings as vector\n",
|
|
"vector_store = Meilisearch.from_texts(texts=texts, embedding=embeddings)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Behind the scenes, Meilisearch will convert the text to multiple vectors. This will bring us to the same result as the following example."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Adding documents and embeddings\n",
|
|
"\n",
|
|
"In this example, we'll use Langchain TextSplitter to split the text in multiple documents. Then, we'll store these documents along with their embeddings."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import TextLoader\n",
|
|
"\n",
|
|
"# Load text\n",
|
|
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
|
|
"documents = loader.load()\n",
|
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
|
"\n",
|
|
"# Create documents\n",
|
|
"docs = text_splitter.split_documents(documents)\n",
|
|
"\n",
|
|
"# Import documents & embeddings in the vector store\n",
|
|
"vector_store = Meilisearch.from_documents(documents=documents, embedding=embeddings)\n",
|
|
"\n",
|
|
"# Search in our vector store\n",
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = vector_store.similarity_search(query)\n",
|
|
"print(docs[0].page_content)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Add documents by creating a Meilisearch Vectorstore"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this approach, we create a vector store object and add documents to it."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.vectorstores import Meilisearch\n",
|
|
"import meilisearch\n",
|
|
"\n",
|
|
"client = meilisearch.Client(url=\"http://127.0.0.1:7700\", api_key=\"***\")\n",
|
|
"vector_store = Meilisearch(\n",
|
|
" embedding=embeddings, client=client, index_name=\"langchain_demo\", text_key=\"text\"\n",
|
|
")\n",
|
|
"vector_store.add_documents(documents)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Similarity Search with score\n",
|
|
"\n",
|
|
"This specific method allows you to return the documents and the distance score of the query to them."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs_and_scores = vector_store.similarity_search_with_score(query)\n",
|
|
"docs_and_scores[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Similarity Search by vector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embedding_vector = embeddings.embed_query(query)\n",
|
|
"docs_and_scores = vector_store.similarity_search_by_vector(embedding_vector)\n",
|
|
"docs_and_scores[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Additional resources\n",
|
|
"\n",
|
|
"Documentation\n",
|
|
"- [Meilisearch](https://www.meilisearch.com/docs/)\n",
|
|
"- [Meilisearch Python SDK](https://python-sdk.meilisearch.com)\n",
|
|
"\n",
|
|
"Open-source repositories\n",
|
|
"- [Meilisearch repository](https://github.com/meilisearch/meilisearch)\n",
|
|
"- [Meilisearch Python SDK](https://github.com/meilisearch/meilisearch-python)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|